training
training copied to clipboard
error run the rnn speech workload, failed to process data after enter docker
after I build contaner, and enter it, when I preprocess the data, it have failure with data attribute.
root@ed1902ed9916:/workspace/rnnt# bash scripts/preprocess_librispeech.sh
Traceback (most recent call last):
File "./utils/convert_librispeech.py", line 25, in <module>
from preprocessing_utils import parallel_preprocess
File "/workspace/rnnt/utils/preprocessing_utils.py", line 18, in <module>
import librosa
File "/opt/conda/lib/python3.8/site-packages/librosa/__init__.py", line 211, in <module>
from . import core
File "/opt/conda/lib/python3.8/site-packages/librosa/core/__init__.py", line 9, in <module>
from .constantq import * # pylint: disable=wildcard-import
File "/opt/conda/lib/python3.8/site-packages/librosa/core/constantq.py", line 1058, in <module>
dtype=np.complex,
File "/opt/conda/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__
raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'complex'.
`np.complex` was a deprecated alias for the builtin `complex`. To avoid this error in existing code, use `complex` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.complex128` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
Traceback (most recent call last):
I install host OS 22.04, now try run this, I got out of space error when building container image.
=> ERROR [ 1/10] FROM docker.io/pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel@sha256:837e6964e5db6e5b35f4d5e98e9cac073ab757766039b9503f39c14beafb0e98 182.4s
=> => resolve docker.io/pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel@sha256:837e6964e5db6e5b35f4d5e98e9cac073ab757766039b9503f39c14beafb0e98 0.0s
=> => sha256:f20d42e5d606f02b790edccc1e6741e0f287ee705a94998fd50c160e96301823 10.70kB / 10.70kB 0.0s
=> => sha256:837e6964e5db6e5b35f4d5e98e9cac073ab757766039b9503f39c14beafb0e98 2.85kB / 2.85kB 0.0s
=> => sha256:171857c49d0f5e2ebf623e6cb36a8bcad585ed0c2aa99c87a055df034c1e5848 26.70MB / 26.70MB 0.8s
=> => sha256:61e52f862619ab016d3bcfbd78e5c7aaaa1989b4c295e6dbcacddd2d7b93e1f5 162B / 162B 0.5s
=> => sha256:419640447d267f068d2f84a093cb13a56ce77e130877f5b8bdb4294f4a90a84f 852B / 852B 0.4s
=> => sha256:2a93278deddf8fe289dceef311ed19e8f2083a88eba6be60d393842fd40697b0 7.21MB / 7.21MB 0.8s
=> => sha256:c9f080049843544961377a152d7d86c34816221038b8da3e3dc207ccddb72549 10.33MB / 10.33MB 0.9s
=> => extracting sha256:171857c49d0f5e2ebf623e6cb36a8bcad585ed0c2aa99c87a055df034c1e5848 1.6s
=> => sha256:8189556b23294579329c522acf5618c024520b323d6a68cdd9eca91ca4f2f454 1.00kB / 1.00kB 1.0s
=> => sha256:c306a0c97a557ede3948263983918da203f1837a354a86fcb5d6270b0c52b9ad 1.13GB / 1.13GB 31.6s
=> => sha256:4a9478bd0b2473c3d7361f9a0a8e98923897103b9b2eb55097db2b643f50c13e 970.89MB / 970.89MB 28.2s
=> => sha256:19a76c31766d36601b8c4a57ea5548a4e22f69846ac653c5ca2bea5eb92b759d 1.06GB / 1.06GB 30.3s
=> => extracting sha256:419640447d267f068d2f84a093cb13a56ce77e130877f5b8bdb4294f4a90a84f 0.0s
=> => extracting sha256:61e52f862619ab016d3bcfbd78e5c7aaaa1989b4c295e6dbcacddd2d7b93e1f5 0.0s
=> => extracting sha256:2a93278deddf8fe289dceef311ed19e8f2083a88eba6be60d393842fd40697b0 0.4s
=> => extracting sha256:c9f080049843544961377a152d7d86c34816221038b8da3e3dc207ccddb72549 0.4s
=> => extracting sha256:8189556b23294579329c522acf5618c024520b323d6a68cdd9eca91ca4f2f454 0.0s
=> => sha256:1d18e0f6b7f66fdbaba1169a3439577dc12fd53b21d7507351a9098e68eb6207 1.01MB / 1.01MB 31.6s
=> => sha256:d8015a90b67c809145c04360809eba130365a701a96319f8fc2c3c786434c33a 2.32GB / 2.32GB 71.7s
=> => sha256:211a7eed3486a96a5e8ba778a64f46475a7131e3b66ccc4ee3af57e334fb534f 138B / 138B 31.9s
=> => extracting sha256:c306a0c97a557ede3948263983918da203f1837a354a86fcb5d6270b0c52b9ad 23.8s
=> => extracting sha256:4a9478bd0b2473c3d7361f9a0a8e98923897103b9b2eb55097db2b643f50c13e 25.8s
=> => extracting sha256:19a76c31766d36601b8c4a57ea5548a4e22f69846ac653c5ca2bea5eb92b759d 48.4s
=> => extracting sha256:1d18e0f6b7f66fdbaba1169a3439577dc12fd53b21d7507351a9098e68eb6207 0.1s
=> => extracting sha256:d8015a90b67c809145c04360809eba130365a701a96319f8fc2c3c786434c33a 52.9s
------
> [ 1/10] FROM docker.io/pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel@sha256:837e6964e5db6e5b35f4d5e98e9cac073ab757766039b9503f39c14beafb0e98:
------
Dockerfile:16
--------------------
14 |
15 | ARG FROM_IMAGE_NAME=pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel
16 | >>> FROM ${FROM_IMAGE_NAME}
17 |
18 | ENV PYTORCH_VERSION=1.7.0a0+7036e91
--------------------
ERROR: failed to solve: failed to register layer: write /opt/conda/lib/libnvvm.so.3.3.0: no space left on device
@gaowayne, my guess is that your second issue, the out-of-space error, is due to your system (it's probably low on space). However, I'm seeing issues similar to your first one. Specifically, if I build the Docker container without editing the Dockerfile or the requirements.txt, I get both an ImportError where Numba needs a NumPy more recent than 1.19 and a SciPy warning. They follow.
/opt/conda/lib/python3.8/site-packages/scipy/__init__.py:143: UserWarning: A NumPy version >=1.19.5 and <1.27.0 is required for this version of SciPy (detected version 1.19.2)
warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
Traceback (most recent call last):
File "./utils/convert_librispeech.py", line 25, in <module>
from preprocessing_utils import parallel_preprocess
File "/workspace/rnnt/utils/preprocessing_utils.py", line 18, in <module>
import librosa
File "/opt/conda/lib/python3.8/site-packages/librosa/__init__.py", line 211, in <module>
from . import core
File "/opt/conda/lib/python3.8/site-packages/librosa/core/__init__.py", line 5, in <module>
from .convert import * # pylint: disable=wildcard-import
File "/opt/conda/lib/python3.8/site-packages/librosa/core/convert.py", line 7, in <module>
from . import notation
File "/opt/conda/lib/python3.8/site-packages/librosa/core/notation.py", line 8, in <module>
from ..util.exceptions import ParameterError
File "/opt/conda/lib/python3.8/site-packages/librosa/util/__init__.py", line 83, in <module>
from .utils import * # pylint: disable=wildcard-import
File "/opt/conda/lib/python3.8/site-packages/librosa/util/utils.py", line 10, in <module>
import numba
File "/opt/conda/lib/python3.8/site-packages/numba/__init__.py", line 55, in <module>
_ensure_critical_deps()
File "/opt/conda/lib/python3.8/site-packages/numba/__init__.py", line 40, in _ensure_critical_deps
raise ImportError(msg)
ImportError: Numba needs NumPy 1.22 or greater. Got NumPy 1.19.
If I apply the below patch in order to induce pip to install a version of NumPy compatible with the installed versions of both SciPy and Numba, I get the error you were seeing. See patch and error.
diff --git a/rnn_speech_recognition/pytorch/requirements.txt b/rnn_speech_recognition/pytorch/requirements.txt
index 7318388..55f9e88 100755
--- a/rnn_speech_recognition/pytorch/requirements.txt
+++ b/rnn_speech_recognition/pytorch/requirements.txt
@@ -8,3 +8,4 @@ librosa==0.8.0
sox==1.4.1
sentencepiece==0.1.94
pandas==1.1.5
+numpy>=1.22,<1.27.0
Traceback (most recent call last):
File "./utils/convert_librispeech.py", line 25, in <module>
from preprocessing_utils import parallel_preprocess
File "/workspace/rnnt/utils/preprocessing_utils.py", line 18, in <module>
import librosa
File "/opt/conda/lib/python3.8/site-packages/librosa/__init__.py", line 211, in <module>
from . import core
File "/opt/conda/lib/python3.8/site-packages/librosa/core/__init__.py", line 9, in <module>
from .constantq import * # pylint: disable=wildcard-import
File "/opt/conda/lib/python3.8/site-packages/librosa/core/constantq.py", line 1058, in <module>
dtype=np.complex,
File "/opt/conda/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__
raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'complex'.
`np.complex` was a deprecated alias for the builtin `complex`. To avoid this error in existing code, use `complex` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.complex128` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
I'm seeing these errors both on top of tree and at tag v4.0
Sorry but the rnnt benchmark is dropped from the training benchmarks suite so this issue cannot be addressed at this time.