I2L-MeshNet_RELEASE
I2L-MeshNet_RELEASE copied to clipboard
Confused about better MPJPE on stage lixel versus stage param
Hi, thank you for quite great work and consistent contribution on 3D human&hand! I am confused about the better MPJPE on lixel (55.83mm) vs. param (66.05mm)
>>> Using GPU: 4,5,6,7
Stage: param
08-10 00:25:56 Creating dataset...
creating index...
index created!
Get bounding box and root from ../data/Human36M/rootnet_output/bbox_root_human36m_output.json
08-10 00:26:16 Load checkpoint from ../output/model_dump/snapshot_17.pth.tar
08-10 00:26:16 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 35/35 [00:46<00:00, 1.09it/s]
MPJPE from lixel mesh: 55.83 mm
PA MPJPE from lixel mesh: 41.10 mm
MPJPE from param mesh: 66.05 mm
PA MPJPE from param mesh: 45.03 mm
- Why stage 1 gets better than stage 2?
- Does that mean stage 2 is unnecessary for better MPJPE/PA-MPJPE? Because as I see in the code below,
stage=param
cut off the gradient of lixel backbone https://github.com/mks0601/I2L-MeshNet_RELEASE/blob/754e0201e494dc891b94949098cc93eec0e37ee8/main/model.py#L54
Hi,
- Because lixel represetation (output of the 1st stage) is easier to predict than SMPL parameters (output of the 2nd stage).
- Can't say always true, but might be true (according to my experimental results).
Thank you for quick reply! It's very kind of you last two more question:
- MPJPE of human3.6m is conducted on 14 joints following HMR&SPIN or on 17 joints?
- So assume an extreme case: if I only expect best MPJPE, I just have to train lixel part, right? (I know it's meanningless for body reconstruction, just raise a case for understanding)