relation-gcn-pytorch
relation-gcn-pytorch copied to clipboard
pytorch implementaion of Relational Graph Convolutional Networks
relation-gcn-pytorch
Pytorch implementation of 'Modeling relational data with graph convolutional networks', ESWC, 2018.
Dependencies
- pytorch 1.1.0
- numpy 1.16.4
- scipy 1.3.0
Results
AIFB
Epoch 0: train loss 1.34 val loss 1.31 val acc0.42 Epoch 10: train loss 0.12 val loss 0.2 val acc0.94 Epoch 20: train loss 0.0 val loss 0.35 val acc0.86 Epoch 30: train loss 0.0 val loss 0.51 val acc0.89 Epoch 40: train loss 0.0 val loss 0.51 val acc0.89
References
[1] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling relational data with graph convolutional networks[C]//European Semantic Web Conference. Springer, Cham, 2018: 593-607.