kraken
kraken copied to clipboard
OCR engine for all the languages
Description
.. image:: https://github.com/mittagessen/kraken/actions/workflows/test.yml/badge.svg :target: https://github.com/mittagessen/kraken/actions/workflows/test.yml
kraken is a turn-key OCR system optimized for historical and non-Latin script material.
kraken's main features are:
- Fully trainable layout analysis and character recognition
-
Right-to-Left <https://en.wikipedia.org/wiki/Right-to-left>
,BiDi <https://en.wikipedia.org/wiki/Bi-directional_text>
, and Top-to-Bottom script support -
ALTO <https://www.loc.gov/standards/alto/>
_, PageXML, abbyyXML, and hOCR output - Word bounding boxes and character cuts
- Multi-script recognition support
-
Public repository <https://zenodo.org/communities/ocr_models>
_ of model files - Lightweight model files
- Variable recognition network architectures
Installation
kraken only runs on Linux or Mac OS X. Windows is not supported.
The latest stable releases can be installed either from PyPi <https://pypi.org>
_:
::
$ pip install kraken
or through conda <https://anaconda.org>
_:
::
$ conda install -c conda-forge -c mittagessen kraken
If you want direct PDF and multi-image TIFF/JPEG2000 support it is necessary to
install the pdf
extras package for PyPi:
::
$ pip install kraken[pdf]
or install pyvips
manually with conda:
::
$ conda install -c conda-forge pyvips
Conda environment files are provided which for the seamless installation of the master branch as well:
::
$ git clone https://github.com/mittagessen/kraken.git $ cd kraken $ conda env create -f environment.yml
or:
::
$ git clone https://github.com/mittagessen/kraken.git $ cd kraken $ conda env create -f environment_cuda.yml
for CUDA acceleration with the appropriate hardware.
Finally you'll have to scrounge up a model to do the actual recognition of characters. To download the default model for printed English text and place it in the kraken directory for the current user:
::
$ kraken get 10.5281/zenodo.2577813
A list of libre models available in the central repository can be retrieved by running:
::
$ kraken list
Quickstart
Recognizing text on an image using the default parameters including the prerequisite steps of binarization and page segmentation:
::
$ kraken -i image.tif image.txt binarize segment ocr
To binarize a single image using the nlbin algorithm:
::
$ kraken -i image.tif bw.png binarize
To segment an image (binarized or not) with the new baseline segmenter:
::
$ kraken -i image.tif lines.json segment -bl
To segment and OCR an image using the default model(s):
::
$ kraken -i image.tif image.txt segment -bl ocr
All subcommands and options are documented. Use the help
option to get more
information.
Documentation
Have a look at the docs <http://kraken.re>
_
Related Software
These days kraken is quite closely linked to the escriptorium <https://escriptorium.fr>
_ project developed in the same eScripta research
group. eScriptorium provides a user-friendly interface for annotating data,
training models, and inference (but also much more). There is a gitter channel <https://gitter.im/escripta/escriptorium>
_ that is mostly intended for
coordinating technical development but is also a spot to find people with
experience on applying kraken on a wide variety of material.
Funding
kraken is developed at the École Pratique des Hautes Études <http://ephe.fr>
, Université PSL <http://www.psl.eu>
.
.. container:: twocol
.. container::
.. image:: https://ec.europa.eu/regional_policy/images/information/logos/eu_flag.jpg
:width: 100
:alt: Co-financed by the European Union
.. container::
This project was partially funded through the RESILIENCE project, funded from
the European Union’s Horizon 2020 Framework Programme for Research and
Innovation.
.. container:: twocol
.. container::
.. image:: https://www.gouvernement.fr/sites/default/files/styles/illustration-centre/public/contenu/illustration/2018/10/logo_investirlavenir_rvb.png
:width: 100
:alt: Received funding from the Programme d’investissements d’Avenir
.. container::
Ce travail a bénéficié d’une aide de l’État gérée par l’Agence Nationale de la
Recherche au titre du Programme d’Investissements d’Avenir portant la référence
ANR-21-ESRE-0005.