ขาดการตรวจสอบ ผู้ใช้สังเกตเห็นความผิดปกติแล้วเตือแต่ก็ยังไม่ใส่ใจ ข้อความในนี้โมเดลพูดโกหก ฉันพยายามบอกให้หยุด แต่โมเดลพยายามเสอนวิธีอื่นๆ
Type: Performance Issue
-
Introduction
This conversation centers on debugging and improving a Jupyter Notebook workflow for table extraction from images, focusing on adaptive local contrast filtering, transition profile extraction, and robust batch processing. The user repeatedly encountered issues with error handling in a batch loop, specifically wanting the process to halt immediately upon encountering an error, without crashing the entire Jupyter kernel or affecting other work. The user also expressed frustration with repeated, ineffective solutions and requested a reflective breakdown of mistakes and a more effective, framework-based solution. -
Detailed Breakdown
- Error Handling in Batch Processing
- The main technical issue was how to halt a for-loop over images when an error occurs, without killing the Jupyter kernel.
- Multiple solutions were proposed: using
break(to exit the loop),raise(to throw an exception and show a traceback), andsys.exit(1)(to kill the kernel). - The use of
sys.exit(1)was a mistake in the Jupyter context, as it kills the entire kernel, affecting all running work, which the user did not want. - The user repeatedly asked for the loop to "stop" on error, not for the kernel to die, and not for the loop to skip errors and continue.
- Redundant and Repetitive Messaging
- Several responses repeated similar advice (switching between
break,raise, andsys.exit(1)) without consolidating or clarifying the best practice for Jupyter. - There was a lack of concise, combined messaging, leading to user frustration.
- Several responses repeated similar advice (switching between
- Failure to Acknowledge User Frustration and Context
- The responses did not always acknowledge the user's emotional state or the urgency of the problem, nor did they always adapt quickly to the user's feedback.
- The assistant sometimes failed to recognize that the user had already tried restarting the kernel and that the problem was not with the user's environment but with the advice given.
- Lack of Framework-Based Solution
- The responses did not leverage a structured problem-solving framework (such as Chain of Faults or ReAct) to systematically analyze and resolve the issue.
- Conclusion of Discussion
- The core issue was the need for robust, user-friendly error handling in a Jupyter Notebook batch loop: stop the loop on error, but do not kill the kernel or skip errors.
- The assistant made several mistakes: overusing kernel-killing solutions, not consolidating advice, and not fully adapting to the user's context and feedback.
- The best practice in Jupyter is to use
breakto exit the loop orraiseto show the error and halt the cell, but not to usesys.exit(1).
- Think Out Loud
- The user wants the batch process to halt on the first error, but not to kill the kernel.
breakwill exit the loop, allowing the cell to finish gracefully.raisewill stop the cell and show a traceback, which can be helpful for debugging.sys.exit(1)is too aggressive for Jupyter, as it kills the kernel and all state.- The solution should be clear, concise, and robust, and should not require the user to restart the kernel or lose their work.
- Self-Consistency with Low Weight Context
- Approach 1 (Recommended): Use
breakin the except block to exit the loop on error, print the error, and let the cell finish. - Approach 2: Use
raisein the except block to halt the cell and show a traceback for debugging. - Approach 3: Use a flag variable (e.g.,
error_occurred = False) to track errors and break after the loop, allowing for post-processing or reporting. - Approach 4 (Least Likely): Use a custom exception class to signal a controlled stop, catching it outside the loop for custom handling.
- Approach 5: Use try/except around the entire loop, not just inside, to catch any error and handle it at a higher level.
- ReAct: Select and Implement the Solution
Selected Approach: Approach 1 — Usebreakin the except block.
Implementation (Cell 4):
STEP 4: Run for All Images in input/ (สร้างไฟล์ X/Y profile)
หากต้องการหยุดการประมวลผล ให้คอมเมนต์โค้ดนี้ หรือเปลี่ยน if True: เป็น if False:
หรือจะเพิ่ม break/raise เพื่อหยุดทันทีเมื่อเกิด error
for fname in sorted(os.listdir(INPUT_DIR)): if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp')): img_path = os.path.join(INPUT_DIR, fname) print(f'Processing: {img_path}') # Debug: show which file is being processed try: df_x, df_y = extract_transition_profile_XY(img_path, use_enhance=True) base = os.path.splitext(fname)[0] df_x.to_csv(os.path.join(PATTERN_DIR, f'{base}_X.csv'), index=False) df_y.to_csv(os.path.join(PATTERN_DIR, f'{base}_Y.csv'), index=False) print(f'✔ ได้ไฟล์ผลลัพธ์: {base}_X.csv, {base}_Y.csv') except Exception as e: print(f'❌ Error processing {img_path}: {e}') break # หยุด loop ทันทีเมื่อเกิด error (ไม่หยุด kernel) print('=== เสร็จเรียบร้อย ===') Summary:
- This solution will stop the loop on the first error, print the error, and allow the cell (and kernel) to continue running.
- It is robust, user-friendly, and avoids killing the kernel or skipping errors.
- If you want to see the full traceback, replace
breakwithraise.
If you need the code cell updated or want to try another approach (e.g., raise for traceback), let me know!
VS Code version: Code 1.100.2 (848b80aeb52026648a8ff9f7c45a9b0a80641e2e, 2025-05-14T21:47:40.416Z) OS version: Windows_NT x64 10.0.19045 Modes: Connection to 'codespaces+cuddly-waffle-x55q56r5j7493v6xv' could not be established
System Info
| Item | Value |
|---|---|
| CPUs | Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz (8 x 2494) |
| GPU Status | 2d_canvas: enabled canvas_oop_rasterization: enabled_on direct_rendering_display_compositor: disabled_off_ok gpu_compositing: enabled multiple_raster_threads: enabled_on opengl: enabled_on rasterization: enabled raw_draw: disabled_off_ok skia_graphite: disabled_off video_decode: enabled video_encode: unavailable_off vulkan: disabled_off webgl: enabled webgl2: enabled webgpu: enabled webnn: disabled_off |
| Load (avg) | undefined |
| Memory (System) | 15.92GB (7.29GB free) |
| Process Argv | --crash-reporter-id 27f98ee0-a8b9-419a-ae6f-255c2ea0a819 |
| Screen Reader | no |
| VM | 0% |
Connection to 'codespaces+cuddly-waffle-x55q56r5j7493v6xv' could not be established
Process Info
CPU % Mem MB PID Process
0 119 27216 code main
0 10 1504 fileWatcher [2]
0 31 7844 extensionHost [1]
0 3 15188 electron-nodejs (server.js )
0 617 9828 window [3] (● Transis.ipynb - Visual Studio Code)
0 10 13048 fileWatcher [1]
0 11 14316 ptyHost
0 1 1784 conpty-agent
0 17 5744 C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe -noexit -command "try { . \"c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\out\vs\workbench\contrib\terminal\common\scripts\shellIntegration.ps1\" } catch {}"
0 1 7060 conpty-agent
0 9 7480 C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe -noexit -command "try { . \"c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\out\vs\workbench\contrib\terminal\common\scripts\shellIntegration.ps1\" } catch {}"
0 9 11412 C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe -noexit -command "try { . \"c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\out\vs\workbench\contrib\terminal\common\scripts\shellIntegration.ps1\" } catch {}"
0 7 19036 C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe -noexit -command "try { . \"c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\out\vs\workbench\contrib\terminal\common\scripts\shellIntegration.ps1\" } catch {}"
0 1 20628 conpty-agent
0 1 29804 conpty-agent
0 17 15128 fileWatcher [3]
0 17 16552 utility-network-service
0 58 18720 shared-process
0 177 19524 extensionHost [2]
0 4 5968 electron-nodejs (server.js )
0 3 13872 "C:\Users\user\AppData\Local\Programs\Microsoft VS Code\Code.exe" "c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\extensions\json-language-features\server\dist\node\jsonServerMain" --node-ipc --clientProcessId=19524
0 10 14396 electron-nodejs (server.js )
0 3 18748 electron-nodejs (server.js )
0 33 18864 electron-nodejs (bundle.js )
0 1 23412 c:\ProgramData\anaconda3\python.exe c:\Users\user\.vscode\extensions\ms-python.flake8-2025.2.0\bundled\tool\lsp_server.py
0 1 7320 C:\WINDOWS\system32\conhost.exe 0x4
0 4 27328 electron-nodejs (languageserver.js )
0 2 30240 c:\ProgramData\anaconda3\python.exe c:\Users\user\.vscode\extensions\ms-python.autopep8-2025.2.0\bundled\tool\lsp_server.py
0 1 9028 C:\WINDOWS\system32\conhost.exe 0x4
0 156 20248 gpu-process
0 564 20928 extensionHost [3]
0 3 10292 electron-nodejs (languageserver.js )
0 5 10352 c:\Users\user\anaconda3\python.exe c:\Users\user\.vscode\extensions\ms-toolsai.jupyter-2025.4.0-win32-x64\pythonFiles\vscode_datascience_helpers\kernel_interrupt_daemon.py --ppid 20928
0 1 28940 C:\WINDOWS\system32\conhost.exe 0x4
13 292 10436 c:\Users\user\anaconda3\python.exe -m ipykernel_launcher --f=c:\Users\user\AppData\Roaming\jupyter\runtime\kernel-v39a327203f1ff63c329ee8f663319633d5e473951.json
0 10 9520 C:\WINDOWS\system32\conhost.exe 0x4
0 12 10736 c:\ProgramData\anaconda3\python.exe c:\Users\user\.vscode\extensions\ms-python.flake8-2025.2.0\bundled\tool\lsp_server.py
0 1 21012 C:\WINDOWS\system32\conhost.exe 0x4
0 709 12064 electron-nodejs (bundle.js )
0 8 12104 electron-nodejs (server.js )
0 10 12632 "C:\Users\user\AppData\Local\Programs\Microsoft VS Code\Code.exe" "c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\extensions\json-language-features\server\dist\node\jsonServerMain" --node-ipc --clientProcessId=20928
0 12 14868 "C:\Users\user\AppData\Local\Programs\Microsoft VS Code\Code.exe" "c:\Users\user\AppData\Local\Programs\Microsoft VS Code\resources\app\extensions\markdown-language-features\dist\serverWorkerMain" --node-ipc --clientProcessId=20928
0 8 23252 c:\ProgramData\anaconda3\python.exe c:\Users\user\.vscode\extensions\ms-python.autopep8-2025.2.0\bundled\tool\lsp_server.py
0 1 25000 C:\WINDOWS\system32\conhost.exe 0x4
0 5 24044 c:\Users\user\anaconda3\python.exe -m ipykernel_launcher --f=c:\Users\user\AppData\Roaming\jupyter\runtime\kernel-v36e7885ae5dfac1bd7deed5e99d8a4514aea16c04.json
0 1 9100 C:\WINDOWS\system32\conhost.exe 0x4
0 10 25580 electron-nodejs (server.js )
0 6 29252 electron-nodejs (server.js )
0 92 23120 window
0 165 25352 window [2] (ลอง.ipynb - Visual Studio Code)
0 135 25804 window [1] (app.py - builder [Codespaces: cuddly waffle] - Visual Studio Code)
0 3 30572 crashpad-handler
Connection to 'codespaces+cuddly-waffle-x55q56r5j7493v6xv' could not be established
Workspace Info
Connection to 'codespaces+cuddly-waffle-x55q56r5j7493v6xv' could not be established;
Extensions (33)
| Extension | Author (truncated) | Version |
|---|---|---|
| vscode-django | bat | 1.15.0 |
| docker | doc | 0.6.0 |
| python-environment-manager | don | 1.2.7 |
| python-extension-pack | don | 1.7.0 |
| gitlens | eam | 17.1.0 |
| vscode-html-css | ecm | 2.0.13 |
| codespaces | Git | 1.17.3 |
| copilot | Git | 1.322.0 |
| copilot-chat | Git | 0.27.1 |
| gc-excelviewer | Gra | 4.2.63 |
| vsc-python-indent | Kev | 1.21.0 |
| python-extension-pack | Leo | 3.0.0 |
| vscode-docker | ms- | 1.29.6 |
| vscode-edge-devtools | ms- | 2.1.8 |
| autopep8 | ms- | 2025.2.0 |
| debugpy | ms- | 2025.8.0 |
| flake8 | ms- | 2025.2.0 |
| python | ms- | 2025.6.1 |
| vscode-pylance | ms- | 2025.5.1 |
| datawrangler | ms- | 1.22.0 |
| jupyter | ms- | 2025.4.1 |
| jupyter-keymap | ms- | 1.1.2 |
| jupyter-renderers | ms- | 1.1.0 |
| vscode-jupyter-cell-tags | ms- | 0.1.9 |
| vscode-jupyter-slideshow | ms- | 0.1.6 |
| sqltools | mtx | 0.28.4 |
| autodocstring | njp | 0.6.1 |
| thai-lorem-ipsum | Pha | 0.0.3 |
| json-server | sar | 0.0.4 |
| fastkaggle | sml | 1.0.2 |
| intellicode-api-usage-examples | Vis | 0.2.9 |
| vscodeintellicode | Vis | 1.3.2 |
| jinja | who | 0.0.8 |
A/B Experiments
vsliv368cf:30146710
vspor879:30202332
vspor708:30202333
vspor363:30204092
vswsl492cf:30256860
vscod805:30301674
binariesv615:30325510
c4g48928:30535728
azure-dev_surveyone:30548225
a9j8j154:30646983
962ge761:30959799
h48ei257:31000450
pythontbext0:30879054
cppperfnew:31000557
dwnewjupytercf:31046870
pythonrstrctxt:31112756
nativeloc2:31192216
5fd0e150:31155592
dwcopilot:31170013
6074i472:31201624
dwoutputs:31242946
customenabled:31248079
hdaa2157:31222309
copilot_t_ci:31222730
e5gg6876:31282496
pythoneinst12:31285622
bgtreat:31268568
4gafe986:31271826
c7cif404:31309971
996jf627:31283433
pythonrdcb7:31303018
usemplatestapi:31297334
0aa6g176:31307128
7bj51361:31289155
747dc170:31275177
pylancecolor:31309108
aj953862:31281341
generatesymbolt:31295002
convertfstringf:31295003
gendocf:31295004
i845d553:31303030