onnxruntime icon indicating copy to clipboard operation
onnxruntime copied to clipboard

Index put loop model regression with ort==1.18

Open titaiwangms opened this issue 1 year ago • 1 comments

Describe the issue

The error is only raised after 1.18. I tried 1.17.3, and it works fine.

onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Non-zero status code returned while running Loop node. Name:'/Loop' Status Message: Non-zero status code returned while running ScatterND node. Name:'/ScatterND_10' Status Message: invalid indice found, indice = 8

To reproduce

(1) With the uploaded ONNX file test_index_put_loop.zip

onnx_model = onnx.load("test_index_put_loop.onnx")
ort_session = onnxruntime.InferenceSession(onnx_model.SerializeToString(), providers=["CPUExecutionProvider"])

onnxruntime_input = {
    k.name: v.numpy(force=True)
    for k, v in zip(ort_session.get_inputs(), [y])
}
ort_session.run(None, onnxruntime_input)

(2) From PyTorch

import torch
import onnx
import onnxruntime

@torch.jit.script
def ngram_attention_bias(
    sequence_length: int, ngram: int, device: torch.device, dtype: torch.dtype
):
    bias = torch.ones(
        (ngram, sequence_length), device=device, dtype=dtype
    ) * float("-inf")
    for stream_idx in range(ngram):
        for i in range(sequence_length):
            bias = bias * 2
            bias[stream_idx, i] = 5
            bias = bias * 5
            bias[0, 0] = 5

    for stream_idx in range(ngram):
        for i in range(sequence_length):
            bias[stream_idx, i] = 5
            bias[0, i] = 5
    return bias

class ScriptModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.ngram = 2
        self.max_target_positions = 512

    def forward(self, hidden_states):
        seq_length, batch_size = hidden_states.shape[:2]
        predict_causal_mask = ngram_attention_bias(
            self.max_target_positions,
            self.ngram,
            hidden_states.device,
            hidden_states.dtype,
        )
        predict_causal_mask = predict_causal_mask[:, :seq_length]
        return predict_causal_mask

x = torch.randn(6, 2)
y = torch.randn(4, 1)
torch.onnx.export(
    torch.jit.script(ScriptModel()),
    x,
    "test_index_put_loop.onnx",
    input_names=["x"],
    dynamic_axes={"x": {0: "seq_length", 1: "batch_size"}},
)

onnx_model = onnx.load("test_index_put_loop.onnx")
ort_session = onnxruntime.InferenceSession(onnx_model.SerializeToString(), providers=["CPUExecutionProvider"])

onnxruntime_input = {
    k.name: v.numpy(force=True)
    for k, v in zip(ort_session.get_inputs(), [y])
}
ort_session.run(None, onnxruntime_input)

Urgency

Ths is spotted in PyTorch converter test case.

Platform

Linux

OS Version

VERSION="2.0.20240301" MARINER

ONNX Runtime Installation

Built from Source

ONNX Runtime Version or Commit ID

798cea2350a196a67ff7e0621ea125c7f2035f7c

ONNX Runtime API

Python

Architecture

X64

Execution Provider

Default CPU

Execution Provider Library Version

No response

titaiwangms avatar May 29 '24 18:05 titaiwangms

This issue has been automatically marked as stale due to inactivity and will be closed in 30 days if no further activity occurs. If further support is needed, please provide an update and/or more details.

github-actions[bot] avatar Jun 30 '24 15:06 github-actions[bot]

This issue has been automatically closed as 'not planned' because it has been marked as 'stale' for more than 30 days without activity. If you believe this is still an issue, please feel free to reopen it.

snnn avatar Jun 07 '25 23:06 snnn