[Issue]: <title> Prompts tuning issue
Is there an existing issue for this?
- [ ] I have searched the existing issues
- [ ] I have checked #657 to validate if my issue is covered by community support
Describe the issue
When I'm creating the graph data by GraphRAG, no matter where I provide a general response role description (entity_extraction and summarize_description), and then re-generate the whole graph data, the general prompt role does not working still, is there any location or any way to add a general response prompt role description to restrict the query result? Thanks in advanced.
Steps to reproduce
No response
GraphRAG Config Used
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: azure_openai_chat # or azure_openai_chat
model: gpt-4o
model_supports_json: true # recommended if this is available for your model.
# max_tokens: 4000
# request_timeout: 180.0
api_base: https://api.nlp.dev.uptimize.merckgroup.com
api_version: 2023-09-01-preview
# organization: <organization_id>
deployment_name: gpt-4o
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# temperature: 0 # temperature for sampling
# top_p: 1 # top-p sampling
# n: 1 # Number of completions to generate
parallelization:
stagger: 0.3
# num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
## parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${GRAPHRAG_API_KEY}
type: azure_openai_embedding # or azure_openai_embedding
model: text-embedding-3-large
api_base: https://api.nlp.dev.uptimize.merckgroup.com
api_version: 2023-09-01-preview
# organization: <organization_id>
deployment_name: text-embedding-3-large
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 1200
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\\.txt$"
cache:
type: file # or blob
base_dir: "cache"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
entity_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "custom_prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 1
summarize_descriptions:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "custom_prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 1
community_reports:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "custom_prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
# num_walks: 10
# walk_length: 40
# window_size: 2
# iterations: 3
# random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
# text_unit_prop: 0.5
# community_prop: 0.1
# conversation_history_max_turns: 5
# top_k_mapped_entities: 10
# top_k_relationships: 10
# llm_temperature: 0 # temperature for sampling
# llm_top_p: 1 # top-p sampling
# llm_n: 1 # Number of completions to generate
# max_tokens: 12000
global_search:
# llm_temperature: 0 # temperature for sampling
# llm_top_p: 1 # top-p sampling
# llm_n: 1 # Number of completions to generate
# max_tokens: 12000
# data_max_tokens: 12000
# map_max_tokens: 1000
# reduce_max_tokens: 2000
# concurrency: 32
Logs and screenshots
No response
Additional Information
- GraphRAG Version:
- Operating System:
- Python Version:
- Related Issues:
Hi!
As I undertand, the issue is related to GraphRAG not picking your custom prompts, right?
Could you please share the prompt_tune command you're using?
Thanks!
Hi Alonso,
Thank you for replying me back, this is my cmd: python -m graphrag.prompt_tune --root .\playground\langchain\knowledge_base\graph_base --domain 'a List of Prohibited Ingredients for Cosmetics' --method random --limit 2 --chunk-size 1200 --output custom_prompts
And I've found after tuning a new custom prompts, I need to re-generate the graph data again to make the prompts working right, am I right?
This issue has been marked stale due to inactivity after repo maintainer or community member responses that request more information or suggest a solution. It will be closed after five additional days.
This issue has been closed after being marked as stale for five days. Please reopen if needed.