graphrag icon indicating copy to clipboard operation
graphrag copied to clipboard

[Bug]: <Error executing verb \"cluster_graph\" in create_base_entity_graph: EmptyNetworkError>

Open Bai1026 opened this issue 1 year ago • 8 comments

Describe the bug

Error executing verb "cluster_graph" in create_base_entity_graph: EmptyNetworkError With my own dataset, and openai API key. But do have the extracted entities in the entity_extraction folder and summarize_descriptions folders.

Steps to reproduce

No response

Expected Behavior

No response

GraphRAG Config Used

encoding_model: cl100k_base skip_workflows: [] llm: api_key: ${GRAPHRAG_API_KEY} type: openai_chat # or azure_openai_chat

model: gpt-4-turbo-preview

model: gpt-3.5-turbo-1106

model: gpt-4o-2024-05-13

model_supports_json: true # recommended if this is available for your model.

max_tokens: 4000

request_timeout: 180.0

api_base: https://.openai.azure.com

api_version: 2024-02-15-preview

organization: <organization_id>

deployment_name: <azure_model_deployment_name>

tokens_per_minute: 150_000 # set a leaky bucket throttle

requests_per_minute: 10_000 # set a leaky bucket throttle

max_retries: 10

max_retry_wait: 10.0

sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times

concurrent_requests: 25 # the number of parallel inflight requests that may be made

parallelization: stagger: 0.3

num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:

parallelization: override the global parallelization settings for embeddings

async_mode: threaded # or asyncio llm: api_key: ${GRAPHRAG_API_KEY} type: openai_embedding # or azure_openai_embedding model: text-embedding-3-small # api_base: https://.openai.azure.com # api_version: 2024-02-15-preview # organization: <organization_id> # deployment_name: <azure_model_deployment_name> # tokens_per_minute: 150_000 # set a leaky bucket throttle # requests_per_minute: 10_000 # set a leaky bucket throttle # max_retries: 10 # max_retry_wait: 10.0 # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times # concurrent_requests: 25 # the number of parallel inflight requests that may be made # batch_size: 16 # the number of documents to send in a single request # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request # target: required # or optional

chunks: size: 300 overlap: 100 group_by_columns: [id] # by default, we don't allow chunks to cross documents

input: type: file # or blob file_type: text # or csv base_dir: "input" file_encoding: utf-8 file_pattern: ".*\.txt$"

cache: type: file # or blob base_dir: "cache"

connection_string: <azure_blob_storage_connection_string>

container_name: <azure_blob_storage_container_name>

storage: type: file # or blob base_dir: "output/${timestamp}/artifacts"

connection_string: <azure_blob_storage_connection_string>

container_name: <azure_blob_storage_container_name>

reporting: type: file # or console, blob base_dir: "output/${timestamp}/reports"

connection_string: <azure_blob_storage_connection_string>

container_name: <azure_blob_storage_container_name>

entity_extraction:

llm: override the global llm settings for this task

parallelization: override the global parallelization settings for this task

async_mode: override the global async_mode settings for this task

prompt: "prompts/entity_extraction.txt" entity_types: [organization,person,geo,event] max_gleanings: 0

summarize_descriptions:

llm: override the global llm settings for this task

parallelization: override the global parallelization settings for this task

async_mode: override the global async_mode settings for this task

prompt: "prompts/summarize_descriptions.txt" max_length: 500

claim_extraction:

llm: override the global llm settings for this task

parallelization: override the global parallelization settings for this task

async_mode: override the global async_mode settings for this task

enabled: true

prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 0

community_report:

llm: override the global llm settings for this task

parallelization: override the global parallelization settings for this task

async_mode: override the global async_mode settings for this task

prompt: "prompts/community_report.txt" max_length: 2000 max_input_length: 8000

cluster_graph: max_cluster_size: 10

embed_graph: enabled: false # if true, will generate node2vec embeddings for nodes

num_walks: 10

walk_length: 40

window_size: 2

iterations: 3

random_seed: 597832

umap: enabled: false # if true, will generate UMAP embeddings for nodes

if we wanna graphml files as output -> turn graphml to true

snapshots: graphml: false raw_entities: false top_level_nodes: false

local_search:

text_unit_prop: 0.5

community_prop: 0.1

conversation_history_max_turns: 5

top_k_mapped_entities: 10

top_k_relationships: 10

max_tokens: 12000

global_search:

max_tokens: 12000

data_max_tokens: 12000

map_max_tokens: 1000

reduce_max_tokens: 2000

concurrency: 32

Logs and screenshots

{"type": "error", "data": "Error executing verb "cluster_graph" in create_base_entity_graph: EmptyNetworkError", "stack": "Traceback (most recent call last):\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb\n result = node.verb.func(**verb_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 61, in cluster_graph\n results = output_df[column].apply(lambda graph: run_layout(strategy, graph))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/series.py", line 4924, in apply\n ).apply()\n ^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/apply.py", line 1427, in apply\n return self.apply_standard()\n ^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/apply.py", line 1507, in apply_standard\n mapped = obj._map_values(\n ^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/base.py", line 921, in _map_values\n return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/algorithms.py", line 1743, in map_array\n return lib.map_infer(values, mapper, convert=convert)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "lib.pyx", line 2972, in pandas._libs.lib.map_infer\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 61, in \n results = output_df[column].apply(lambda graph: run_layout(strategy, graph))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 171, in run_layout\n clusters = run_leiden(graph, strategy)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/strategies/leiden.py", line 26, in run\n node_id_to_community_map = _compute_leiden_communities(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/strategies/leiden.py", line 61, in _compute_leiden_communities\n community_mapping = hierarchical_leiden(\n ^^^^^^^^^^^^^^^^^^^^\n File "<@beartype(graspologic.partition.leiden.hierarchical_leiden) at 0x3233a4860>", line 304, in hierarchical_leiden\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graspologic/partition/leiden.py", line 588, in hierarchical_leiden\n hierarchical_clusters_native = gn.hierarchical_leiden(\n ^^^^^^^^^^^^^^^^^^^^^^^\nleiden.EmptyNetworkError: EmptyNetworkError\n", "source": "EmptyNetworkError", "details": null} {"type": "error", "data": "Error running pipeline!", "stack": "Traceback (most recent call last):\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/run.py", line 323, in run_pipeline\n result = await workflow.run(context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/datashaper/workflow/workflow.py", line 369, in run\n timing = await self._execute_verb(node, context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/datashaper/workflow/workflow.py", line 410, in _execute_verb\n result = node.verb.func(**verb_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 61, in cluster_graph\n results = output_df[column].apply(lambda graph: run_layout(strategy, graph))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/series.py", line 4924, in apply\n ).apply()\n ^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/apply.py", line 1427, in apply\n return self.apply_standard()\n ^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/apply.py", line 1507, in apply_standard\n mapped = obj._map_values(\n ^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/base.py", line 921, in _map_values\n return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/pandas/core/algorithms.py", line 1743, in map_array\n return lib.map_infer(values, mapper, convert=convert)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "lib.pyx", line 2972, in pandas._libs.lib.map_infer\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 61, in \n results = output_df[column].apply(lambda graph: run_layout(strategy, graph))\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/cluster_graph.py", line 171, in run_layout\n clusters = run_leiden(graph, strategy)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/strategies/leiden.py", line 26, in run\n node_id_to_community_map = _compute_leiden_communities(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graphrag/index/verbs/graph/clustering/strategies/leiden.py", line 61, in _compute_leiden_communities\n community_mapping = hierarchical_leiden(\n ^^^^^^^^^^^^^^^^^^^^\n File "<@beartype(graspologic.partition.leiden.hierarchical_leiden) at 0x3233a4860>", line 304, in hierarchical_leiden\n File "/opt/anaconda3/envs/graphrag/lib/python3.11/site-packages/graspologic/partition/leiden.py", line 588, in hierarchical_leiden\n hierarchical_clusters_native = gn.hierarchical_leiden(\n ^^^^^^^^^^^^^^^^^^^^^^^\nleiden.EmptyNetworkError: EmptyNetworkError\n", "source": "EmptyNetworkError", "details": null}

Additional Information

  • GraphRAG Version:
  • Operating System:
  • Python Version:
  • Related Issues:

Bai1026 avatar Jul 19 '24 03:07 Bai1026