[Bug]: No such file or directory: '/Users/ankushsingal/Desktop/Graphrag/output/20240714-151538/artifacts/create_final_nodes.parquet'<title>
Describe the bug
i added
and ran
export GRAPHRAG_API_KEY=groq-key
python3 -m graphrag.index --init --root .
whereas
python -m graphrag.query --root . --method local "Who is Scrooge, and what are his main relationships?"
gives
python -m graphrag.query --root . --method local "Who is Scrooge, and what are his main relationships?"
2024-07-14 15:54:41.980181: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
INFO: Reading settings from settings.yaml
Traceback (most recent call last):
File "<frozen runpy>", line 198, in _run_module_as_main
File "<frozen runpy>", line 88, in _run_code
File "/Users/ankushsingal/Desktop/GraphRAG/graphragvenv/lib/python3.12/site-packages/graphrag/query/__main__.py", line 75, in <module>
run_local_search(
File "/Users/ankushsingal/Desktop/GraphRAG/graphragvenv/lib/python3.12/site-packages/graphrag/query/cli.py", line 105, in run_local_search
final_nodes = pd.read_parquet(data_path / "create_final_nodes.parquet")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/ankushsingal/Desktop/GraphRAG/graphragvenv/lib/python3.12/site-packages/pandas/io/parquet.py", line 667, in read_parquet
return impl.read(
^^^^^^^^^^
File "/Users/ankushsingal/Desktop/GraphRAG/graphragvenv/lib/python3.12/site-packages/pandas/io/parquet.py", line 267, in read
path_or_handle, handles, filesystem = _get_path_or_handle(
^^^^^^^^^^^^^^^^^^^^
File "/Users/ankushsingal/Desktop/GraphRAG/graphragvenv/lib/python3.12/site-packages/pandas/io/parquet.py", line 140, in _get_path_or_handle
handles = get_handle(
^^^^^^^^^^^
File "/Users/ankushsingal/Desktop/GraphRAG/graphragvenv/lib/python3.12/site-packages/pandas/io/common.py", line 882, in get_handle
handle = open(handle, ioargs.mode)
^^^^^^^^^^^^^^^^^^^^^^^^^
FileNotFoundError: [Errno 2] No such file or directory: '/Users/ankushsingal/Desktop/GraphRAG/output/20240714-155424/artifacts/create_final_nodes.parquet'
Steps to reproduce
settings.yaml
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_chat # or azure_openai_chat
model: mixtral-8x7b-32768
model_supports_json: true # recommended if this is available for your model.
# max_tokens: 4000
# request_timeout: 180.0
api_base: https://api.groq.com/openai/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
tokens_per_minute: 3000 # set a leaky bucket throttle
requests_per_minute: 30 # set a leaky bucket throttle
max_retries: 3
max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
parallelization:
stagger: 0.3
# num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
## parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${OPENAI_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: text-embedding-3-small
# api_base: https://<instance>.openai.azure.com
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 300
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\\.txt$"
cache:
type: file # or blob
base_dir: "cache"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
entity_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 0
summarize_descriptions:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 0
community_report:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
# num_walks: 10
# walk_length: 40
# window_size: 2
# iterations: 3
# random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
# text_unit_prop: 0.5
# community_prop: 0.1
# conversation_history_max_turns: 5
# top_k_mapped_entities: 10
# top_k_relationships: 10
# max_tokens: 12000
global_search:
# max_tokens: 12000
# data_max_tokens: 12000
# map_max_tokens: 1000
# reduce_max_tokens: 2000
# concurrency: 32
Expected Behavior
No response
GraphRAG Config Used
No response
Logs and screenshots
No response
Additional Information
- GraphRAG Version:
- Operating System:
- Python Version:
- Related Issues:
I also encountered the same problem.
I also encountered the same problem.
were you able to resolve it ?
no,There was a problem running the Indexing pipeline, and the parquet files was not generated normally.
You can try running the command line window as an administrator and re-run the index pipeline. I succeeded.
and re-ru
i am using mac, let me try.. will keep you posted
check if there's file in that directory. and then you can try the command with --data to specify the output director.
python -m graphrag.query --root . --method local "Who is Scrooge, and what are his main relationships?" --data output/20240714-151538/artifacts
This issue has been marked stale due to inactivity after repo maintainer or community member responses that request more information or suggest a solution. It will be closed after five additional days.
This issue has been closed after being marked as stale for five days. Please reopen if needed.