SoftTeacher
SoftTeacher copied to clipboard
Config files for evaluating the provided models
Hi. Is it possible to share the config files used for evaluating the weights available in through the Google Drive links?
I was trying to reproduce the 44.05% mAP of the Faster R-CNN (ResNet-50) -- Ours (thr=5e-2) experiment. However, I only get Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.324.
The command that I ran was the following:
bash tools/dist_test.sh
/home/ubuntu/project/Detection/SoftTeacher/configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k_eval.py
/home/ubuntu/project/Detection/SoftTeacher/work_dirs/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k/coco_iter_720000.pth
1 --eval bbox --cfg-options model.test_cfg.rcnn.score_thr=0.90
The config file is the following:
_base_="base.py"
data = dict(
samples_per_gpu=8,
workers_per_gpu=5,
train=dict(
sup=dict(
ann_file="/home/ubuntu/project/data/COCO/annotations/instances_train2017.json",
img_prefix="/home/ubuntu/project/data/COCO/train2017/",
),
),
val=dict(
ann_file="/home/ubuntu/project/data/COCO/annotations/instances_val2017.json",
img_prefix="/home/ubuntu/project/data/COCO/val2017/",
),
test=dict(
ann_file="/home/ubuntu/project/data/COCO/annotations/instances_val2017.json",
img_prefix="/home/ubuntu/project/data/COCO/val2017/",
),
sampler=dict(
train=dict(
sample_ratio=[1, 1],
)
)
)
semi_wrapper = dict(
train_cfg=dict(
unsup_weight=2.0,
)
)
optimizer = dict(lr=0.01, weight_decay=1e-4, momentum=0.9)
lr_config = dict(step=[300000, 425000])
runner = dict(_delete_=True, type="IterBasedRunner", max_iters=450000)
Could someone help me out? Thank you. If there is an existing issue about this that I missed, I apologize in advance.