MMdnn icon indicating copy to clipboard operation
MMdnn copied to clipboard

Caffe to Pytorch or Tensorflow unable to convert

Open edmundang1994 opened this issue 4 years ago • 0 comments

Platform (like ubuntu 16.04/win10): Ubuntu 20.04.1

Python version: 3.8.5

Source framework with version (like Tensorflow 1.4.1 with GPU): Caffe

Destination framework with version (like CNTK 2.3 with GPU): Pytorch or Tensorflow

Pre-trained model path (webpath or webdisk path): trafficlightrecognition.zip

Running scripts:

I have tried to convert from caffe to pytorch and tensor, both gave the same error for conversion. Error code as shown below. Please help!!

zatch123129@ubuntu:~/Desktop/adversarial-av/MMdnn$ mmconvert -sf caffe -in /home/zatch123129/Desktop/adversarial-av/caffe_models/production/traffic_light_recognition/vertical/deploy.prototxt -iw /home/zatch123129/Desktop/adversarial-av/caffe_models/production/traffic_light_recognition/vertical/baidu_iter_250000.caffemodel -df pytorch -om caffe_baidu_iter_250000.dnn WARNING: Logging before InitGoogleLogging() is written to STDERR I0224 00:38:06.458184 37356 net.cpp:58] Initializing net from parameters: state { phase: TEST level: 0 } layer { name: "input" type: "Input" top: "data_org" input_param { shape { dim: 1 dim: 3 dim: 32 dim: 96 } } } layer { name: "permute" type: "Permute" bottom: "data_org" top: "data" permute_param { order: 0 order: 1 order: 3 order: 2 } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } dilation: 1 } } layer { name: "conv1_bn" type: "BatchNorm" bottom: "conv1" top: "conv1" batch_norm_param { use_global_stats: true } } layer { name: "conv1_bn_scale" type: "Scale" bottom: "conv1" top: "conv1" scale_param { axis: 1 num_axes: 1 bias_term: false } } layer { name: "conv1_relu" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 pad_h: 1 pad_w: 1 round_mode: FLOOR } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } dilation: 1 } } layer { name: "conv2_bn" type: "BatchNorm" bottom: "conv2" top: "conv2" batch_norm_param { use_global_stats: true } } layer { name: "conv2_bn_scale" type: "Scale" bottom: "conv2" top: "conv2" scale_param { axis: 1 num_axes: 1 bias_term: false } } layer { name: "conv2_relu" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "pool2" type: "Pooling" bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 pad_h: 1 pad_w: 1 round_mode: FLOOR } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } dilation: 1 } } layer { name: "conv3_bn" type: "BatchNorm" bottom: "conv3" top: "conv3" batch_norm_param { use_global_stats: true } } layer { name: "conv3_bn_scale" type: "Scale" bottom: "conv3" top: "conv3" scale_param { axis: 1 num_axes: 1 bias_term: false } } layer { name: "conv3_relu" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "pool3" type: "Pooling" bottom: "conv3" top: "pool3" pooling_param { pool: MAX kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 pad_h: 1 pad_w: 1 round_mode: FLOOR } } layer { name: "conv4" type: "Convolution" bottom: "pool3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } dilation: 1 } } layer { name: "conv4_bn" type: "BatchNorm" bottom: "conv4" top: "conv4" batch_norm_param { use_global_stats: true } } layer { name: "conv4_bn_scale" type: "Scale" bottom: "conv4" top: "conv4" scale_param { axis: 1 num_axes: 1 bias_term: false } } layer { name: "conv4_relu" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "pool4" type: "Pooling" bottom: "conv4" top: "pool4" pooling_param { pool: MAX kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 pad_h: 1 pad_w: 1 round_mode: FLOOR } } layer { name: "conv5" type: "Convolution" bottom: "pool4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } dilation: 1 } } layer { name: "conv5_bn" type: "BatchNorm" bottom: "conv5" top: "conv5" batch_norm_param { use_global_stats: true } } layer { name: "conv5_bn_scale" type: "Scale" bottom: "conv5" top: "conv5" scale_param { axis: 1 num_axes: 1 bias_term: false } } layer { name: "conv5_relu" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: AVE kernel_h: 6 kernel_w: 2 stride_h: 6 stride_w: 2 round_mode: FLOOR } } layer { name: "ft" type: "InnerProduct" bottom: "pool5" top: "ft" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 128 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "ft_bn" type: "BatchNorm" bottom: "ft" top: "ft" batch_norm_param { use_global_stats: true } } layer { name: "ft_bn_scale" type: "Scale" bottom: "ft" top: "ft" scale_param { axis: 1 num_axes: 1 bias_term: false } } layer { name: "ft_relu" type: "ReLU" bottom: "ft" top: "ft" } layer { name: "logits" type: "InnerProduct" bottom: "ft" top: "logits" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "prob" type: "Softmax" bottom: "logits" top: "prob" } I0224 00:38:06.458712 37356 layer_factory.hpp:77] Creating layer input I0224 00:38:06.458739 37356 net.cpp:100] Creating Layer input I0224 00:38:06.458748 37356 net.cpp:408] input -> data_org I0224 00:38:06.458777 37356 net.cpp:150] Setting up input I0224 00:38:06.458786 37356 net.cpp:157] Top shape: 1 3 32 96 (9216) I0224 00:38:06.458796 37356 net.cpp:165] Memory required for data: 36864 I0224 00:38:06.458803 37356 layer_factory.hpp:77] Creating layer permute I0224 00:38:06.458819 37356 net.cpp:100] Creating Layer permute I0224 00:38:06.458827 37356 net.cpp:434] permute <- data_org I0224 00:38:06.458835 37356 net.cpp:408] permute -> data I0224 00:38:06.458853 37356 net.cpp:150] Setting up permute I0224 00:38:06.458861 37356 net.cpp:157] Top shape: 1 3 96 32 (9216) I0224 00:38:06.458870 37356 net.cpp:165] Memory required for data: 73728 I0224 00:38:06.458878 37356 layer_factory.hpp:77] Creating layer conv1 I0224 00:38:06.458889 37356 net.cpp:100] Creating Layer conv1 I0224 00:38:06.458896 37356 net.cpp:434] conv1 <- data I0224 00:38:06.458905 37356 net.cpp:408] conv1 -> conv1 I0224 00:38:06.459002 37356 net.cpp:150] Setting up conv1 I0224 00:38:06.459033 37356 net.cpp:157] Top shape: 1 32 96 32 (98304) I0224 00:38:06.459044 37356 net.cpp:165] Memory required for data: 466944 I0224 00:38:06.459056 37356 layer_factory.hpp:77] Creating layer conv1_bn I0224 00:38:06.459086 37356 net.cpp:100] Creating Layer conv1_bn I0224 00:38:06.459098 37356 net.cpp:434] conv1_bn <- conv1 I0224 00:38:06.459107 37356 net.cpp:395] conv1_bn -> conv1 (in-place) I0224 00:38:06.459129 37356 net.cpp:150] Setting up conv1_bn I0224 00:38:06.459137 37356 net.cpp:157] Top shape: 1 32 96 32 (98304) I0224 00:38:06.459146 37356 net.cpp:165] Memory required for data: 860160 I0224 00:38:06.459156 37356 layer_factory.hpp:77] Creating layer conv1_bn_scale I0224 00:38:06.459172 37356 net.cpp:100] Creating Layer conv1_bn_scale I0224 00:38:06.459179 37356 net.cpp:434] conv1_bn_scale <- conv1 I0224 00:38:06.459187 37356 net.cpp:395] conv1_bn_scale -> conv1 (in-place) I0224 00:38:06.459218 37356 net.cpp:150] Setting up conv1_bn_scale I0224 00:38:06.459226 37356 net.cpp:157] Top shape: 1 32 96 32 (98304) I0224 00:38:06.459234 37356 net.cpp:165] Memory required for data: 1253376 I0224 00:38:06.459242 37356 layer_factory.hpp:77] Creating layer conv1_relu I0224 00:38:06.459251 37356 net.cpp:100] Creating Layer conv1_relu I0224 00:38:06.459259 37356 net.cpp:434] conv1_relu <- conv1 I0224 00:38:06.459265 37356 net.cpp:395] conv1_relu -> conv1 (in-place) I0224 00:38:06.459278 37356 net.cpp:150] Setting up conv1_relu I0224 00:38:06.459285 37356 net.cpp:157] Top shape: 1 32 96 32 (98304) I0224 00:38:06.459293 37356 net.cpp:165] Memory required for data: 1646592 I0224 00:38:06.459300 37356 layer_factory.hpp:77] Creating layer pool1 I0224 00:38:06.459308 37356 net.cpp:100] Creating Layer pool1 I0224 00:38:06.459316 37356 net.cpp:434] pool1 <- conv1 I0224 00:38:06.459323 37356 net.cpp:408] pool1 -> pool1 I0224 00:38:06.459334 37356 net.cpp:150] Setting up pool1 I0224 00:38:06.459342 37356 net.cpp:157] Top shape: 1 32 48 16 (24576) I0224 00:38:06.459350 37356 net.cpp:165] Memory required for data: 1744896 I0224 00:38:06.459357 37356 layer_factory.hpp:77] Creating layer conv2 I0224 00:38:06.459367 37356 net.cpp:100] Creating Layer conv2 I0224 00:38:06.459374 37356 net.cpp:434] conv2 <- pool1 I0224 00:38:06.459383 37356 net.cpp:408] conv2 -> conv2 I0224 00:38:06.459568 37356 net.cpp:150] Setting up conv2 I0224 00:38:06.459595 37356 net.cpp:157] Top shape: 1 64 48 16 (49152) I0224 00:38:06.459606 37356 net.cpp:165] Memory required for data: 1941504 I0224 00:38:06.459615 37356 layer_factory.hpp:77] Creating layer conv2_bn I0224 00:38:06.459627 37356 net.cpp:100] Creating Layer conv2_bn I0224 00:38:06.459635 37356 net.cpp:434] conv2_bn <- conv2 I0224 00:38:06.459643 37356 net.cpp:395] conv2_bn -> conv2 (in-place) I0224 00:38:06.459662 37356 net.cpp:150] Setting up conv2_bn I0224 00:38:06.459671 37356 net.cpp:157] Top shape: 1 64 48 16 (49152) I0224 00:38:06.459679 37356 net.cpp:165] Memory required for data: 2138112 I0224 00:38:06.459689 37356 layer_factory.hpp:77] Creating layer conv2_bn_scale I0224 00:38:06.459699 37356 net.cpp:100] Creating Layer conv2_bn_scale I0224 00:38:06.459707 37356 net.cpp:434] conv2_bn_scale <- conv2 I0224 00:38:06.459714 37356 net.cpp:395] conv2_bn_scale -> conv2 (in-place) I0224 00:38:06.459729 37356 net.cpp:150] Setting up conv2_bn_scale I0224 00:38:06.459736 37356 net.cpp:157] Top shape: 1 64 48 16 (49152) I0224 00:38:06.459744 37356 net.cpp:165] Memory required for data: 2334720 I0224 00:38:06.459751 37356 layer_factory.hpp:77] Creating layer conv2_relu I0224 00:38:06.459761 37356 net.cpp:100] Creating Layer conv2_relu I0224 00:38:06.459769 37356 net.cpp:434] conv2_relu <- conv2 I0224 00:38:06.459776 37356 net.cpp:395] conv2_relu -> conv2 (in-place) I0224 00:38:06.459784 37356 net.cpp:150] Setting up conv2_relu I0224 00:38:06.459791 37356 net.cpp:157] Top shape: 1 64 48 16 (49152) I0224 00:38:06.459798 37356 net.cpp:165] Memory required for data: 2531328 I0224 00:38:06.459805 37356 layer_factory.hpp:77] Creating layer pool2 I0224 00:38:06.459813 37356 net.cpp:100] Creating Layer pool2 I0224 00:38:06.459820 37356 net.cpp:434] pool2 <- conv2 I0224 00:38:06.459827 37356 net.cpp:408] pool2 -> pool2 I0224 00:38:06.459837 37356 net.cpp:150] Setting up pool2 I0224 00:38:06.459844 37356 net.cpp:157] Top shape: 1 64 24 8 (12288) I0224 00:38:06.459852 37356 net.cpp:165] Memory required for data: 2580480 I0224 00:38:06.459858 37356 layer_factory.hpp:77] Creating layer conv3 I0224 00:38:06.459868 37356 net.cpp:100] Creating Layer conv3 I0224 00:38:06.459875 37356 net.cpp:434] conv3 <- pool2 I0224 00:38:06.459884 37356 net.cpp:408] conv3 -> conv3 I0224 00:38:06.460860 37356 net.cpp:150] Setting up conv3 I0224 00:38:06.460899 37356 net.cpp:157] Top shape: 1 128 24 8 (24576) I0224 00:38:06.460918 37356 net.cpp:165] Memory required for data: 2678784 I0224 00:38:06.460937 37356 layer_factory.hpp:77] Creating layer conv3_bn I0224 00:38:06.460955 37356 net.cpp:100] Creating Layer conv3_bn I0224 00:38:06.460968 37356 net.cpp:434] conv3_bn <- conv3 I0224 00:38:06.460983 37356 net.cpp:395] conv3_bn -> conv3 (in-place) I0224 00:38:06.461019 37356 net.cpp:150] Setting up conv3_bn I0224 00:38:06.461033 37356 net.cpp:157] Top shape: 1 128 24 8 (24576) I0224 00:38:06.461048 37356 net.cpp:165] Memory required for data: 2777088 I0224 00:38:06.461079 37356 layer_factory.hpp:77] Creating layer conv3_bn_scale I0224 00:38:06.461129 37356 net.cpp:100] Creating Layer conv3_bn_scale I0224 00:38:06.461151 37356 net.cpp:434] conv3_bn_scale <- conv3 I0224 00:38:06.461174 37356 net.cpp:395] conv3_bn_scale -> conv3 (in-place) I0224 00:38:06.461195 37356 net.cpp:150] Setting up conv3_bn_scale I0224 00:38:06.461203 37356 net.cpp:157] Top shape: 1 128 24 8 (24576) I0224 00:38:06.461213 37356 net.cpp:165] Memory required for data: 2875392 I0224 00:38:06.461221 37356 layer_factory.hpp:77] Creating layer conv3_relu I0224 00:38:06.461236 37356 net.cpp:100] Creating Layer conv3_relu I0224 00:38:06.461243 37356 net.cpp:434] conv3_relu <- conv3 I0224 00:38:06.461251 37356 net.cpp:395] conv3_relu -> conv3 (in-place) I0224 00:38:06.461261 37356 net.cpp:150] Setting up conv3_relu I0224 00:38:06.461268 37356 net.cpp:157] Top shape: 1 128 24 8 (24576) I0224 00:38:06.461277 37356 net.cpp:165] Memory required for data: 2973696 I0224 00:38:06.461283 37356 layer_factory.hpp:77] Creating layer pool3 I0224 00:38:06.461293 37356 net.cpp:100] Creating Layer pool3 I0224 00:38:06.461302 37356 net.cpp:434] pool3 <- conv3 I0224 00:38:06.461310 37356 net.cpp:408] pool3 -> pool3 I0224 00:38:06.461323 37356 net.cpp:150] Setting up pool3 I0224 00:38:06.461331 37356 net.cpp:157] Top shape: 1 128 12 4 (6144) I0224 00:38:06.461339 37356 net.cpp:165] Memory required for data: 2998272 I0224 00:38:06.461347 37356 layer_factory.hpp:77] Creating layer conv4 I0224 00:38:06.461362 37356 net.cpp:100] Creating Layer conv4 I0224 00:38:06.461371 37356 net.cpp:434] conv4 <- pool3 I0224 00:38:06.461380 37356 net.cpp:408] conv4 -> conv4 I0224 00:38:06.463476 37356 net.cpp:150] Setting up conv4 I0224 00:38:06.463543 37356 net.cpp:157] Top shape: 1 128 12 4 (6144) I0224 00:38:06.463569 37356 net.cpp:165] Memory required for data: 3022848 I0224 00:38:06.463596 37356 layer_factory.hpp:77] Creating layer conv4_bn I0224 00:38:06.463631 37356 net.cpp:100] Creating Layer conv4_bn I0224 00:38:06.463650 37356 net.cpp:434] conv4_bn <- conv4 I0224 00:38:06.463671 37356 net.cpp:395] conv4_bn -> conv4 (in-place) I0224 00:38:06.463719 37356 net.cpp:150] Setting up conv4_bn I0224 00:38:06.463735 37356 net.cpp:157] Top shape: 1 128 12 4 (6144) I0224 00:38:06.463754 37356 net.cpp:165] Memory required for data: 3047424 I0224 00:38:06.463774 37356 layer_factory.hpp:77] Creating layer conv4_bn_scale I0224 00:38:06.463801 37356 net.cpp:100] Creating Layer conv4_bn_scale I0224 00:38:06.463819 37356 net.cpp:434] conv4_bn_scale <- conv4 I0224 00:38:06.463838 37356 net.cpp:395] conv4_bn_scale -> conv4 (in-place) I0224 00:38:06.463871 37356 net.cpp:150] Setting up conv4_bn_scale I0224 00:38:06.463887 37356 net.cpp:157] Top shape: 1 128 12 4 (6144) I0224 00:38:06.463907 37356 net.cpp:165] Memory required for data: 3072000 I0224 00:38:06.463925 37356 layer_factory.hpp:77] Creating layer conv4_relu I0224 00:38:06.463948 37356 net.cpp:100] Creating Layer conv4_relu I0224 00:38:06.463965 37356 net.cpp:434] conv4_relu <- conv4 I0224 00:38:06.463984 37356 net.cpp:395] conv4_relu -> conv4 (in-place) I0224 00:38:06.464004 37356 net.cpp:150] Setting up conv4_relu I0224 00:38:06.464020 37356 net.cpp:157] Top shape: 1 128 12 4 (6144) I0224 00:38:06.464038 37356 net.cpp:165] Memory required for data: 3096576 I0224 00:38:06.464058 37356 layer_factory.hpp:77] Creating layer pool4 I0224 00:38:06.464078 37356 net.cpp:100] Creating Layer pool4 I0224 00:38:06.464145 37356 net.cpp:434] pool4 <- conv4 I0224 00:38:06.464185 37356 net.cpp:408] pool4 -> pool4 I0224 00:38:06.464308 37356 net.cpp:150] Setting up pool4 I0224 00:38:06.464329 37356 net.cpp:157] Top shape: 1 128 6 2 (1536) I0224 00:38:06.464339 37356 net.cpp:165] Memory required for data: 3102720 I0224 00:38:06.464347 37356 layer_factory.hpp:77] Creating layer conv5 I0224 00:38:06.464388 37356 net.cpp:100] Creating Layer conv5 I0224 00:38:06.464397 37356 net.cpp:434] conv5 <- pool4 I0224 00:38:06.464408 37356 net.cpp:408] conv5 -> conv5 I0224 00:38:06.465965 37356 net.cpp:150] Setting up conv5 I0224 00:38:06.465982 37356 net.cpp:157] Top shape: 1 128 6 2 (1536) I0224 00:38:06.465991 37356 net.cpp:165] Memory required for data: 3108864 I0224 00:38:06.466001 37356 layer_factory.hpp:77] Creating layer conv5_bn I0224 00:38:06.466014 37356 net.cpp:100] Creating Layer conv5_bn I0224 00:38:06.466022 37356 net.cpp:434] conv5_bn <- conv5 I0224 00:38:06.466030 37356 net.cpp:395] conv5_bn -> conv5 (in-place) I0224 00:38:06.466050 37356 net.cpp:150] Setting up conv5_bn I0224 00:38:06.466058 37356 net.cpp:157] Top shape: 1 128 6 2 (1536) I0224 00:38:06.466065 37356 net.cpp:165] Memory required for data: 3115008 I0224 00:38:06.466074 37356 layer_factory.hpp:77] Creating layer conv5_bn_scale I0224 00:38:06.466131 37356 net.cpp:100] Creating Layer conv5_bn_scale I0224 00:38:06.466145 37356 net.cpp:434] conv5_bn_scale <- conv5 I0224 00:38:06.466154 37356 net.cpp:395] conv5_bn_scale -> conv5 (in-place) I0224 00:38:06.466171 37356 net.cpp:150] Setting up conv5_bn_scale I0224 00:38:06.466178 37356 net.cpp:157] Top shape: 1 128 6 2 (1536) I0224 00:38:06.466187 37356 net.cpp:165] Memory required for data: 3121152 I0224 00:38:06.466194 37356 layer_factory.hpp:77] Creating layer conv5_relu I0224 00:38:06.466205 37356 net.cpp:100] Creating Layer conv5_relu I0224 00:38:06.466212 37356 net.cpp:434] conv5_relu <- conv5 I0224 00:38:06.466219 37356 net.cpp:395] conv5_relu -> conv5 (in-place) I0224 00:38:06.466228 37356 net.cpp:150] Setting up conv5_relu I0224 00:38:06.466234 37356 net.cpp:157] Top shape: 1 128 6 2 (1536) I0224 00:38:06.466243 37356 net.cpp:165] Memory required for data: 3127296 I0224 00:38:06.466248 37356 layer_factory.hpp:77] Creating layer pool5 I0224 00:38:06.466256 37356 net.cpp:100] Creating Layer pool5 I0224 00:38:06.466264 37356 net.cpp:434] pool5 <- conv5 I0224 00:38:06.466271 37356 net.cpp:408] pool5 -> pool5 I0224 00:38:06.466281 37356 net.cpp:150] Setting up pool5 I0224 00:38:06.466289 37356 net.cpp:157] Top shape: 1 128 1 1 (128) I0224 00:38:06.466296 37356 net.cpp:165] Memory required for data: 3127808 I0224 00:38:06.466302 37356 layer_factory.hpp:77] Creating layer ft I0224 00:38:06.466318 37356 net.cpp:100] Creating Layer ft I0224 00:38:06.466326 37356 net.cpp:434] ft <- pool5 I0224 00:38:06.466334 37356 net.cpp:408] ft -> ft I0224 00:38:06.466523 37356 net.cpp:150] Setting up ft I0224 00:38:06.466532 37356 net.cpp:157] Top shape: 1 128 (128) I0224 00:38:06.466539 37356 net.cpp:165] Memory required for data: 3128320 I0224 00:38:06.466548 37356 layer_factory.hpp:77] Creating layer ft_bn I0224 00:38:06.466559 37356 net.cpp:100] Creating Layer ft_bn I0224 00:38:06.466567 37356 net.cpp:434] ft_bn <- ft I0224 00:38:06.466575 37356 net.cpp:395] ft_bn -> ft (in-place) I0224 00:38:06.466594 37356 net.cpp:150] Setting up ft_bn I0224 00:38:06.466601 37356 net.cpp:157] Top shape: 1 128 (128) I0224 00:38:06.466609 37356 net.cpp:165] Memory required for data: 3128832 I0224 00:38:06.466622 37356 layer_factory.hpp:77] Creating layer ft_bn_scale I0224 00:38:06.466634 37356 net.cpp:100] Creating Layer ft_bn_scale I0224 00:38:06.466641 37356 net.cpp:434] ft_bn_scale <- ft I0224 00:38:06.466650 37356 net.cpp:395] ft_bn_scale -> ft (in-place) I0224 00:38:06.466662 37356 net.cpp:150] Setting up ft_bn_scale I0224 00:38:06.466670 37356 net.cpp:157] Top shape: 1 128 (128) I0224 00:38:06.466677 37356 net.cpp:165] Memory required for data: 3129344 I0224 00:38:06.466684 37356 layer_factory.hpp:77] Creating layer ft_relu I0224 00:38:06.466693 37356 net.cpp:100] Creating Layer ft_relu I0224 00:38:06.466701 37356 net.cpp:434] ft_relu <- ft I0224 00:38:06.466708 37356 net.cpp:395] ft_relu -> ft (in-place) I0224 00:38:06.466717 37356 net.cpp:150] Setting up ft_relu I0224 00:38:06.466723 37356 net.cpp:157] Top shape: 1 128 (128) I0224 00:38:06.466730 37356 net.cpp:165] Memory required for data: 3129856 I0224 00:38:06.466737 37356 layer_factory.hpp:77] Creating layer logits I0224 00:38:06.466747 37356 net.cpp:100] Creating Layer logits I0224 00:38:06.466754 37356 net.cpp:434] logits <- ft I0224 00:38:06.466763 37356 net.cpp:408] logits -> logits I0224 00:38:06.466784 37356 net.cpp:150] Setting up logits I0224 00:38:06.466791 37356 net.cpp:157] Top shape: 1 4 (4) I0224 00:38:06.466799 37356 net.cpp:165] Memory required for data: 3129872 I0224 00:38:06.466807 37356 layer_factory.hpp:77] Creating layer prob I0224 00:38:06.466820 37356 net.cpp:100] Creating Layer prob I0224 00:38:06.466827 37356 net.cpp:434] prob <- logits I0224 00:38:06.466835 37356 net.cpp:408] prob -> prob I0224 00:38:06.466847 37356 net.cpp:150] Setting up prob I0224 00:38:06.466854 37356 net.cpp:157] Top shape: 1 4 (4) I0224 00:38:06.466861 37356 net.cpp:165] Memory required for data: 3129888 I0224 00:38:06.466868 37356 net.cpp:228] prob does not need backward computation. I0224 00:38:06.466878 37356 net.cpp:228] logits does not need backward computation. I0224 00:38:06.466886 37356 net.cpp:228] ft_relu does not need backward computation. I0224 00:38:06.466892 37356 net.cpp:228] ft_bn_scale does not need backward computation. I0224 00:38:06.466898 37356 net.cpp:228] ft_bn does not need backward computation. I0224 00:38:06.466905 37356 net.cpp:228] ft does not need backward computation. I0224 00:38:06.466913 37356 net.cpp:228] pool5 does not need backward computation. I0224 00:38:06.466920 37356 net.cpp:228] conv5_relu does not need backward computation. I0224 00:38:06.466926 37356 net.cpp:228] conv5_bn_scale does not need backward computation. I0224 00:38:06.466933 37356 net.cpp:228] conv5_bn does not need backward computation. I0224 00:38:06.466940 37356 net.cpp:228] conv5 does not need backward computation. I0224 00:38:06.466948 37356 net.cpp:228] pool4 does not need backward computation. I0224 00:38:06.466955 37356 net.cpp:228] conv4_relu does not need backward computation. I0224 00:38:06.466962 37356 net.cpp:228] conv4_bn_scale does not need backward computation. I0224 00:38:06.466969 37356 net.cpp:228] conv4_bn does not need backward computation. I0224 00:38:06.466976 37356 net.cpp:228] conv4 does not need backward computation. I0224 00:38:06.466984 37356 net.cpp:228] pool3 does not need backward computation. I0224 00:38:06.466991 37356 net.cpp:228] conv3_relu does not need backward computation. I0224 00:38:06.466997 37356 net.cpp:228] conv3_bn_scale does not need backward computation. I0224 00:38:06.467005 37356 net.cpp:228] conv3_bn does not need backward computation. I0224 00:38:06.467011 37356 net.cpp:228] conv3 does not need backward computation. I0224 00:38:06.467020 37356 net.cpp:228] pool2 does not need backward computation. I0224 00:38:06.467026 37356 net.cpp:228] conv2_relu does not need backward computation. I0224 00:38:06.467033 37356 net.cpp:228] conv2_bn_scale does not need backward computation. I0224 00:38:06.467041 37356 net.cpp:228] conv2_bn does not need backward computation. I0224 00:38:06.467047 37356 net.cpp:228] conv2 does not need backward computation. I0224 00:38:06.467054 37356 net.cpp:228] pool1 does not need backward computation. I0224 00:38:06.467062 37356 net.cpp:228] conv1_relu does not need backward computation. I0224 00:38:06.467069 37356 net.cpp:228] conv1_bn_scale does not need backward computation. I0224 00:38:06.467092 37356 net.cpp:228] conv1_bn does not need backward computation. I0224 00:38:06.467106 37356 net.cpp:228] conv1 does not need backward computation. I0224 00:38:06.467114 37356 net.cpp:228] permute does not need backward computation. I0224 00:38:06.467121 37356 net.cpp:228] input does not need backward computation. I0224 00:38:06.467128 37356 net.cpp:270] This network produces output prob I0224 00:38:06.467149 37356 net.cpp:283] Network initialization done. Traceback (most recent call last): File "/home/zatch123129/.local/bin/mmconvert", line 8, in sys.exit(_main()) File "/home/zatch123129/Desktop/adversarial-av/MMdnn/mmdnn/conversion/_script/convert.py", line 102, in _main ret = convertToIR._convert(ir_args) File "/home/zatch123129/Desktop/adversarial-av/MMdnn/mmdnn/conversion/_script/convertToIR.py", line 16, in _convert transformer = CaffeTransformer(args.network, args.weights, "tensorflow", inputshape[0], phase = args.caffePhase) File "/home/zatch123129/Desktop/adversarial-av/MMdnn/mmdnn/conversion/caffe/transformer.py", line 325, in init graph = GraphBuilder(def_path, self.input_shape, self.is_train_proto, phase).build() File "/home/zatch123129/Desktop/adversarial-av/MMdnn/mmdnn/conversion/caffe/graph.py", line 454, in build graph.compute_output_shapes(self.model) File "/home/zatch123129/Desktop/adversarial-av/MMdnn/mmdnn/conversion/caffe/graph.py", line 274, in compute_output_shapes node.output_shape = TensorShape(*NodeKind.compute_output_shape(node)) File "/home/zatch123129/Desktop/adversarial-av/MMdnn/mmdnn/conversion/caffe/graph.py", line 133, in compute_output_shape return LAYER_DESCRIPTORSnode.kind KeyError: None

image I noticed the above error in graph.py, it seems like NodeKind wasn't able to read the different layers, anyone able to help with this?

edmundang1994 avatar Feb 24 '21 08:02 edmundang1994