DeepSpeed icon indicating copy to clipboard operation
DeepSpeed copied to clipboard

[BUG] is_zero_init_model is always False when I'm using zero_init!

Open CHNRyan opened this issue 1 year ago • 5 comments

Describe the bug When I'm fine tuning llama2 with deepspeed zero3, I set "zero3_init_flag: true" in my accelerate config. The "is_deepspeed_zero3_enabled()" in transformers/integrations/deepspeed.py is also judged to True. But the "is_zero_init_model" is judged to False in _configure_distributed_model of deepspeed/runtime/engine.py. I'm not sure if it abnormal?

To Reproduce Here is my code:

from datasets import load_dataset
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer, TrainingArguments
import bitsandbytes as bnb
from peft import LoraConfig
from trl import SFTTrainer

base_model_name ="/home/yangtong/data/llama2-hf/llama2-13b-chat_hf"

dataset = load_dataset("json",data_files="Belle_open_source_0.5M_changed.json",split="train")

result_dir = "tmp"
training_args = TrainingArguments(
    report_to="none",
    output_dir=result_dir, 
    # per_device_train_batch_size * gradient_accumulation_steps = batch_size
    per_device_train_batch_size=1, 
    gradient_accumulation_steps=16, 
    learning_rate=2e-4, 
    logging_steps=10, 
    # max_steps=520, 
    num_train_epochs=0.016, 
    save_steps=500, 
    bf16 = True,  # set bf16 to True with an A100
    # optim='paged_adamw_32bit',
    gradient_checkpointing=True
)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, 
    bnb_4bit_use_double_quant=True, 
    bnb_4bit_quant_type="nf4", 
    bnb_4bit_compute_dtype=torch.bfloat16, 
)

base_model = LlamaForCausalLM.from_pretrained(
    base_model_name, 
    quantization_config=bnb_config, 
    torch_dtype=torch.bfloat16,
    trust_remote_code=True
)
base_model.config.use_cache = False
base_model.config.pretraining_tp = 1

def find_all_linear_names(model):
    cls = bnb.nn.Linear4bit
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])
    if 'lm_head' in lora_module_names: # needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)
models=find_all_linear_names(base_model)

peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=models
)

tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
tokenizer.pad_token = tokenizer.eos_token

max_seq_length = 512  
trainer = SFTTrainer(
    model=base_model,
    train_dataset=dataset,
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    args=training_args
)

trainer.train()

output_dir = os.path.join(result_dir, "final_checkpoint")
trainer.model.save_pretrained(output_dir)

Here is my accelerate config:

compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
  deepspeed_config_file: /home/yangtong/ft_dis/ds_config/3.json
  zero3_init_flag: true
distributed_type: DEEPSPEED
downcast_bf16: 'no'
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
num_machines: 1
num_processes: 4
rdzv_backend: 'c10d'
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

Here is my deepspeed config:

{
  "optimizer": {
    "type": "AdamW",
    "params": {
        "lr": 2e-4,
        "betas": [
          0.9,
          0.999
        ],
        "eps": "auto",
        "weight_decay": "auto",
        "adam_w_mode": true,
        "torch_adam": true
    }
  },
  
  "scheduler": {
    "type": "WarmupDecayLR",
    "params": {
        "warmup_min_lr": "auto",
        "warmup_max_lr": "auto",
        "warmup_num_steps": "auto",
        "total_num_steps": "auto"
    }
  },
  
  "zero_optimization": {
    "stage": 3,
    "allgather_partitions": true,
    "allgather_bucket_size": 2e8,
    "reduce_scatter": true,
    "reduce_bucket_size": 2e8,
    "contiguous_gradients": true,
    "overlap_comm": true,
    "offload_optimizer": {
      "device": "none",
      "pin_memory": true
    },
    "offload_param": {
      "device": "cpu",
      "pin_memory": true
    },
    "sub_group_size": 1e9,
    "stage3_prefetch_bucket_size": "auto",
    "stage3_param_persistence_threshold": "auto",
    "stage3_max_live_parameters": 1e9,
    "stage3_max_reuse_distance": 1e9,
    "stage3_gather_16bit_weights_on_model_save": true
  },
  "bf16": {
    "enabled": true
  },
  "gradient_clipping": "auto",
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": 1,
  "gradient_accumulation_steps": 16,
  "wall_clock_breakdown": false
}

Expected behavior Parameters first partition and then load to GPUs.

System info (please complete the following information):

  • OS: Ubuntu 22.04.4 LTS (Linux 5.15.0-106-generic)
  • GPU count and types 2 x Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
  • Python version 3.10.13
  • Pytorch version 2.2.2
  • CUDA version 11.8.0
  • bitsandbytes==0.43.0
  • huggingface_hub==0.23.2
  • accelerate==0.30.1
  • transformers==4.41.1
  • peft==0.9.0
  • deepspeed==0.14.0

Launcher context

accelerate launch \
--config_file "config/z3_3.yaml" \
--num_processes 1 \
ft_acc.py

Here is engine.py: image

I will truly appreciate if anyone can help me solve it ! @loadams @tjruwase @deepcharm

CHNRyan avatar Jun 08 '24 08:06 CHNRyan

Maybe this link will help, https://huggingface.co/docs/transformers/main/en/deepspeed?models=pretrained+model#non-trainer-deepspeed-integration

Taiinguyenn139 avatar Jun 09 '24 15:06 Taiinguyenn139

Maybe this link will help, https://huggingface.co/docs/transformers/main/en/deepspeed?models=pretrained+model#non-trainer-deepspeed-integration

@Taiinguyenn139 Thanks for your reply! I have tried it but I lose. Here is my code, maybe it is not correct:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'

from datasets import load_dataset
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer, TrainingArguments
import bitsandbytes as bnb
from peft import LoraConfig
from trl import SFTTrainer

from accelerate import Accelerator
accelerator = Accelerator()

from transformers.integrations import HfDeepSpeedConfig
import deepspeed
ds_config = "ds_config/3.json"
dschf = HfDeepSpeedConfig(ds_config) 

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, 
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4", 
    bnb_4bit_compute_dtype=torch.bfloat16, 
)

base_model_name ="/home/yangtong/data/llama2-hf/llama2-13b-chat_hf"
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    quantization_config=bnb_config, 
    torch_dtype=torch.bfloat16
)
base_model.config.use_cache = False
base_model.config.pretraining_tp = 1
# engine = deepspeed.initialize(model=base_model, config_params=ds_config)

dataset = load_dataset("json",data_files="Belle_open_source_0.5M_changed.json",split="train")

result_dir = "tmp"
training_args = TrainingArguments(
    report_to="wandb",
    output_dir=result_dir, 
    # per_device_train_batch_size * gradient_accumulation_steps = batch_size
    per_device_train_batch_size=1,
    gradient_accumulation_steps=16,
    learning_rate=2e-4,
    logging_steps=10, 
    # max_steps=520, 
    num_train_epochs=0.037,
    save_steps=500,  # 65
    bf16 = True,
    # optim='paged_adamw_32bit',
    gradient_checkpointing=True,
    # group_by_length=True,
    # remove_unused_columns=False,
    # warmup_ratio=0.03,
    # lr_scheduler_type='constant',
    # max_grad_norm=0.3
)

models = ['v_proj', 'gate_proj', 'down_proj', 'k_proj', 'q_proj', 'o_proj', 'up_proj']

peft_config = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=models
)

tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
tokenizer.pad_token = tokenizer.eos_token

max_seq_length = 512  
trainer = SFTTrainer(
    model=base_model,
    train_dataset=dataset,
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    args=training_args
)

trainer.train()

output_dir = os.path.join(result_dir, "final_checkpoint")
trainer.model.save_pretrained(output_dir)
# trainer.save_model(output_dir)  # Stage-3

I have some questions about the way your provide: (1) The situation in this link is "Non-Trainer DeepSpeed integration". I'm wondering I use SFTtrainer in my code, isn't it attribute to Trainer? (2) I'm using accelerate, and I set TrainingArguments before from_pretrained in my origin code refer to https://huggingface.co/docs/transformers/v4.18.0/en/main_classes/deepspeed#constructing-massive-models:~:text=If%20you%20want%20to%20use%20a,is%20how%20example%20scripts%20are%20written.. Is necessery to set HfDeepSpeedConfig?

CHNRyan avatar Jun 10 '24 12:06 CHNRyan

(1) In my experience, you can run ZeRO 3 with SFTrainer or Trainer (2) I dont use accelerate but I use deepspeed command like this

deepspeed train.py

You don't need to set HfDeepSpeedConfig

(3) To more clearly, ZeRO stage 3 won't shard your params because your are using QLoRA, as discussed in this post https://www.reddit.com/r/LocalLLaMA/comments/1ai5mv3/thoughts_on_qlora_with_fsdp/ It's just offload your params to CPU only. So is_zero_init_model is always False maybe expected behavior.

Taiinguyenn139 avatar Jun 10 '24 13:06 Taiinguyenn139

(1) In my experience, you can run ZeRO 3 with SFTrainer or Trainer (2) I dont use accelerate but I use deepspeed command like this

deepspeed train.py

You don't need to set HfDeepSpeedConfig

(3) To more clearly, ZeRO stage 3 won't shard your params because your are using QLoRA, as discussed in this post https://www.reddit.com/r/LocalLLaMA/comments/1ai5mv3/thoughts_on_qlora_with_fsdp/ It's just offload your params to CPU only. So is_zero_init_model is always False maybe expected behavior.

@Taiinguyenn139 Thank you for your help! I'm using SFTrainer so I think I don't need HFDeepSpeedConfig. And using my origin code and command "accelerate launch --config_file "config/z3_3.yaml" --num_processes 1 ft_acc.py" is entirly equal to "deepspeed ft_acc.py" with "deepspeed="config_path"" added in TrainingArguments. And based on the link you provided, I try to use zero3+lora instead zero3+qlora (just remove bnb_config = BitsAndBytesConfig(...) ). Then it magically worked! Parameters first shard then load to each GPU! It looks like zero3_init don't support qlora, but except this link, I didn't search any information about that. Maybe I'll open another issue to ask this question. And I'll truly appreciate if you have any other info help me!

CHNRyan avatar Jun 11 '24 05:06 CHNRyan

@Taiinguyenn139, thanks for helping to resolve this issue.

Closing this issue.

tjruwase avatar Aug 03 '24 16:08 tjruwase