[BUG] convergence issues with `zero_hpz_partition_size`
Describe the bug
I wanted to try ZeRO++ and found that using zero_hpz_partition_size has convergence issues.
The current 0.12.5 version doesn't converge at all
Since then I tried https://github.com/microsoft/DeepSpeed/tree/HeyangQin/mixz_hpz_fix and it's learning, but much slower than w/o it.
Basically, the expectation is that the hybrid and non-hybrid settings should lead to an identical loss curve.
As a base I'm using HF Transformers llama-2-7b on 4 A100 nodes trained from scratch.
with HeyangQin/mixz_hpz_fix it's learning but not well:
2 problems:
- the loss starts much higher by 1-2 points
- it's not catching up with the baseline
ds config:
"zero_optimization": {
"stage": 3,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 90000000,
"contiguous_gradients": true,
"stage3_gather_16bit_weights_on_model_save": false,
"stage3_prefetch_bucket_size": 5e7,
"stage3_param_persistence_threshold": 1e5,
"stage3_max_live_parameters": 3e9,
"stage3_max_reuse_distance": 3e9,
"sub_group_size": 1e9,
"zero_hpz_partition_size": 8,
"offload_optimizer": {
"device": "none"
},
"offload_param": {
"device": "none"
}
},
ds_report output
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
[WARNING] async_io requires the dev libaio .so object and headers but these were not found.
[WARNING] async_io: please install the libaio-dev package with apt
[WARNING] If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
async_io ............... [NO] ....... [NO]
fused_adam ............. [NO] ....... [OKAY]
cpu_adam ............... [NO] ....... [OKAY]
cpu_adagrad ............ [NO] ....... [OKAY]
cpu_lion ............... [NO] ....... [OKAY]
[WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
evoformer_attn ......... [NO] ....... [NO]
fused_lamb ............. [NO] ....... [OKAY]
fused_lion ............. [NO] ....... [OKAY]
inference_core_ops ..... [NO] ....... [OKAY]
cutlass_ops ............ [NO] ....... [OKAY]
quantizer .............. [NO] ....... [OKAY]
ragged_device_ops ...... [NO] ....... [OKAY]
ragged_ops ............. [NO] ....... [OKAY]
random_ltd ............. [NO] ....... [OKAY]
[WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.1
[WARNING] using untested triton version (2.1.0), only 1.0.0 is known to be compatible
sparse_attn ............ [NO] ....... [NO]
spatial_inference ...... [NO] ....... [OKAY]
transformer ............ [NO] ....... [OKAY]
stochastic_transformer . [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/env/lib/conda/tr041-dawn-llama/lib/python3.9/site-packages/torch']
torch version .................... 2.1.1+cu121
deepspeed install path ........... ['/data/env/lib/repos/retro-llama/tr043-dawn-llama-3/DeepSpeed/deepspeed']
deepspeed info ................... 0.12.6+48ddf31d, 48ddf31d, HeyangQin/mixz_hpz_fix
torch cuda version ............... 12.1
torch hip version ................ None
nvcc version ..................... 11.8
deepspeed wheel compiled w. ...... torch 2.1, cuda 12.1
shared memory (/dev/shm) size .... 669.32 GB
Screenshots If applicable, add screenshots to help explain your problem.
System info (please complete the following information):
- OS: Ubuntu 22.04
- GPU count and types 4 machines with x8 A100s each
- Python version 3.9
@HeyangQin