Hello, could you please give me some advice on why the size of the TinyCLIP-ViT-39M-16-Text-19M.bin model I distilled is not 300mb but 900mb, thanks very much!!!
Hello, could you please give me some advice on why the size of the TinyCLIP-ViT-39M-16-Text-19M.bin model I distilled is not 300mb but 900mb, thanks very much!!!
export NNODES=1 export GPUS_PER_NODE=1 export WANDB__SERVICE_WAIT=60 export CUDA_VISIBLE_DEVICES=5
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES"
torchrun $DISTRIBUTED_ARGS src/training/main.py
--save-frequency 1
--report-to wandb
--train-data /home/gg/gg/MQBench-main/test/model/e1/split_2tar
--dataset-type webdataset
--imagenet-val ./ImageNet
--warmup 2000
--batch-size 1024
--epochs 25
--workers 8
--model TinyCLIP-ViT-39M-16-Text-19M
--name exp_name
--seed 0
--local-loss
--grad-checkpointing
--output ./outputs/TinyCLIP-ViT-39M-16-Text-19M
--lr 0.0001
--gather-with-grad
--pretrained-image-file ViT-B-16@openai
--pretrained-text-file ViT-B-16@openai
--distillation-teacher ViT-B-32@laion2b_e16
--norm_gradient_clip 5
--train-num-samples 15000000
--logit-scale 50
It also contains the master weight and the optimizer states.
You can keep the value corresponding to the key state_dict only.
ckpt = torch.load(checkpoint_fname)
new_ckpt = dict(state_dict=ckpt['state_dict'])
torch.save(new_ckpt, saved_fname)
It also contains the master weight and the optimizer states. You can keep the value corresponding to the key
state_dictonly.ckpt = torch.load(checkpoint_fname) new_ckpt = dict(state_dict=ckpt['state_dict']) torch.save(new_ckpt, saved_fname)
thanks very much!!!
It also contains the master weight and the optimizer states. You can keep the value corresponding to the key
state_dictonly.ckpt = torch.load(checkpoint_fname) new_ckpt = dict(state_dict=ckpt['state_dict']) torch.save(new_ckpt, saved_fname)
After I modify the parameters according to this code, the accuracy in cifar is only 0.09, and the following error is displayed, could you please give me some advice, thanks!!!
Some weights of the model checkpoint at clip were not used when initializing CLIPModel: ['state_dict']
- This IS expected if you are initializing CLIPModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing CLIPModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of CLIPModel were not initialized from the model checkpoint at clip and are newly initialized: ['logit_scale', 'text_model.embeddings.position_embedding.weight', 'text_model.embeddings.token_embedding.weight', 'text_model.encoder.layers.0.layer_norm1.bias', 'text_model.encoder.layers.0.layer_norm1.weight', 'text_model.encoder.layers.0.layer_norm2.bias', 'text_model.encoder.layers.0.layer_norm2.weight', 'text_model.encoder.layers.0.mlp.fc1.bias', 'text_model.encoder.layers.0.mlp.fc1.weight', 'text_model.encoder.layers.0.mlp.fc2.bias', 'text_model.encoder.layers.0.mlp.fc2.weight', 'text_model.encoder.layers.0.self_attn.k_proj.bias', 'text_model.encoder.layers.0.self_attn.k_proj.weight', 'text_model.encoder.layers.0.self_attn.out_proj.bias', 'text_model.encoder.layers.0.self_attn.out_proj.weight', 'text_model.encoder.layers.0.self_attn.q_proj.bias', 'text_model.encoder.layers.0.self_attn.q_proj.weight', 'text_model.encoder.layers.0.self_attn.v_proj.bias', 'text_model.encoder.layers.0.self_attn.v_proj.weight', 'text_model.encoder.layers.1.layer_norm1.bias', 'text_model.encoder.layers.1.layer_norm1.weight', 'text_model.encoder.layers.1.layer_norm2.bias', 'text_model.encoder.layers.1.layer_norm2.weight', 'text_model.encoder.layers.1.mlp.fc1.bias', 'text_model.encoder.layers.1.mlp.fc1.weight', 'text_model.encoder.layers.1.mlp.fc2.bias', 'text_model.encoder.layers.1.mlp.fc2.weight', 'text_model.encoder.layers.1.self_attn.k_proj.bias', 'text_model.encoder.layers.1.self_attn.k_proj.weight', 'text_model.encoder.layers.1.self_attn.out_proj.bias', 'text_model.encoder.layers.1.self_attn.out_proj.weight', 'text_model.encoder.layers.1.self_attn.q_proj.bias', 'text_model.encoder.layers.1.self_attn.q_proj.weight', 'text_model.encoder.layers.1.self_attn.v_proj.bias', 'text_model.encoder.layers.1.self_attn.v_proj.weight', 'text_model.encoder.layers.2.layer_norm1.bias', 'text_model.encoder.layers.2.layer_norm1.weight', 'text_model.encoder.layers.2.layer_norm2.bias', 'text_model.encoder.layers.2.layer_norm2.weight', 'text_model.encoder.layers.2.mlp.fc1.bias', 'text_model.encoder.layers.2.mlp.fc1.weight', 'text_model.encoder.layers.2.mlp.fc2.bias', 'text_model.encoder.layers.2.mlp.fc2.weight', 'text_model.encoder.layers.2.self_attn.k_proj.bias', 'text_model.encoder.layers.2.self_attn.k_proj.weight', 'text_model.encoder.layers.2.self_attn.out_proj.bias', 'text_model.encoder.layers.2.self_attn.out_proj.weight', 'text_model.encoder.layers.2.self_attn.q_proj.bias', 'text_model.encoder.layers.2.self_attn.q_proj.weight', 'text_model.encoder.layers.2.self_attn.v_proj.bias', 'text_model.encoder.layers.2.self_attn.v_proj.weight', 'text_model.encoder.layers.3.layer_norm1.bias', 'text_model.encoder.layers.3.layer_norm1.weight', 'text_model.encoder.layers.3.layer_norm2.bias', 'text_model.encoder.layers.3.layer_norm2.weight', 'text_model.encoder.layers.3.mlp.fc1.bias', 'text_model.encoder.layers.3.mlp.fc1.weight', 'text_model.encoder.layers.3.mlp.fc2.bias', 'text_model.encoder.layers.3.mlp.fc2.weight', 'text_model.encoder.layers.3.self_attn.k_proj.bias', 'text_model.encoder.layers.3.self_attn.k_proj.weight', 'text_model.encoder.layers.3.self_attn.out_proj.bias', 'text_model.encoder.layers.3.self_attn.out_proj.weight', 'text_model.encoder.layers.3.self_attn.q_proj.bias', 'text_model.encoder.layers.3.self_attn.q_proj.weight', 'text_model.encoder.layers.3.self_attn.v_proj.bias', 'text_model.encoder.layers.3.self_attn.v_proj.weight', 'text_model.encoder.layers.4.layer_norm1.bias', 'text_model.encoder.layers.4.layer_norm1.weight', 'text_model.encoder.layers.4.layer_norm2.bias', 'text_model.encoder.layers.4.layer_norm2.weight', 'text_model.encoder.layers.4.mlp.fc1.bias', 'text_model.encoder.layers.4.mlp.fc1.weight', 'text_model.encoder.layers.4.mlp.fc2.bias', 'text_model.encoder.layers.4.mlp.fc2.weight', 'text_model.encoder.layers.4.self_attn.k_proj.bias', 'text_model.encoder.layers.4.self_attn.k_proj.weight', 'text_model.encoder.layers.4.self_attn.out_proj.bias', 'text_model.encoder.layers.4.self_attn.out_proj.weight', 'text_model.encoder.layers.4.self_attn.q_proj.bias', 'text_model.encoder.layers.4.self_attn.q_proj.weight', 'text_model.encoder.layers.4.self_attn.v_proj.bias', 'text_model.encoder.layers.4.self_attn.v_proj.weight', 'text_model.encoder.layers.5.layer_norm1.bias', 'text_model.encoder.layers.5.layer_norm1.weight', 'text_model.encoder.layers.5.layer_norm2.bias', 'text_model.encoder.layers.5.layer_norm2.weight', 'text_model.encoder.layers.5.mlp.fc1.bias', 'text_model.encoder.layers.5.mlp.fc1.weight', 'text_model.encoder.layers.5.mlp.fc2.bias', 'text_model.encoder.layers.5.mlp.fc2.weight', 'text_model.encoder.layers.5.self_attn.k_proj.bias', 'text_model.encoder.layers.5.self_attn.k_proj.weight', 'text_model.encoder.layers.5.self_attn.out_proj.bias', 'text_model.encoder.layers.5.self_attn.out_proj.weight', 'text_model.encoder.layers.5.self_attn.q_proj.bias', 'text_model.encoder.layers.5.self_attn.q_proj.weight', 'text_model.encoder.layers.5.self_attn.v_proj.bias', 'text_model.encoder.layers.5.self_attn.v_proj.weight', 'text_model.final_layer_norm.bias', 'text_model.final_layer_norm.weight', 'text_projection.weight', 'vision_model.embeddings.class_embedding', 'vision_model.embeddings.patch_embedding.weight', 'vision_model.embeddings.position_embedding.weight', 'vision_model.encoder.layers.0.layer_norm1.bias', 'vision_model.encoder.layers.0.layer_norm1.weight', 'vision_model.encoder.layers.0.layer_norm2.bias', 'vision_model.encoder.layers.0.layer_norm2.weight', 'vision_model.encoder.layers.0.mlp.fc1.bias', 'vision_model.encoder.layers.0.mlp.fc1.weight', 'vision_model.encoder.layers.0.mlp.fc2.bias', 'vision_model.encoder.layers.0.mlp.fc2.weight', 'vision_model.encoder.layers.0.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.self_attn.k_proj.weight', 'vision_model.encoder.layers.0.self_attn.out_proj.bias', 'vision_model.encoder.layers.0.self_attn.out_proj.weight', 'vision_model.encoder.layers.0.self_attn.q_proj.bias', 'vision_model.encoder.layers.0.self_attn.q_proj.weight', 'vision_model.encoder.layers.0.self_attn.v_proj.bias', 'vision_model.encoder.layers.0.self_attn.v_proj.weight', 'vision_model.encoder.layers.1.layer_norm1.bias', 'vision_model.encoder.layers.1.layer_norm1.weight', 'vision_model.encoder.layers.1.layer_norm2.bias', 'vision_model.encoder.layers.1.layer_norm2.weight', 'vision_model.encoder.layers.1.mlp.fc1.bias', 'vision_model.encoder.layers.1.mlp.fc1.weight', 'vision_model.encoder.layers.1.mlp.fc2.bias', 'vision_model.encoder.layers.1.mlp.fc2.weight', 'vision_model.encoder.layers.1.self_attn.k_proj.bias', 'vision_model.encoder.layers.1.self_attn.k_proj.weight', 'vision_model.encoder.layers.1.self_attn.out_proj.bias', 'vision_model.encoder.layers.1.self_attn.out_proj.weight', 'vision_model.encoder.layers.1.self_attn.q_proj.bias', 'vision_model.encoder.layers.1.self_attn.q_proj.weight', 'vision_model.encoder.layers.1.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.layer_norm1.bias', 'vision_model.encoder.layers.10.layer_norm1.weight', 'vision_model.encoder.layers.10.layer_norm2.bias', 'vision_model.encoder.layers.10.layer_norm2.weight', 'vision_model.encoder.layers.10.mlp.fc1.bias', 'vision_model.encoder.layers.10.mlp.fc1.weight', 'vision_model.encoder.layers.10.mlp.fc2.bias', 'vision_model.encoder.layers.10.mlp.fc2.weight', 'vision_model.encoder.layers.10.self_attn.k_proj.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.weight', 'vision_model.encoder.layers.10.self_attn.out_proj.bias', 'vision_model.encoder.layers.10.self_attn.out_proj.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.bias', 'vision_model.encoder.layers.10.self_attn.q_proj.weight', 'vision_model.encoder.layers.10.self_attn.v_proj.bias', 'vision_model.encoder.layers.10.self_attn.v_proj.weight', 'vision_model.encoder.layers.11.layer_norm1.bias', 'vision_model.encoder.layers.11.layer_norm1.weight', 'vision_model.encoder.layers.11.layer_norm2.bias', 'vision_model.encoder.layers.11.layer_norm2.weight', 'vision_model.encoder.layers.11.mlp.fc1.bias', 'vision_model.encoder.layers.11.mlp.fc1.weight', 'vision_model.encoder.layers.11.mlp.fc2.bias', 'vision_model.encoder.layers.11.mlp.fc2.weight', 'vision_model.encoder.layers.11.self_attn.k_proj.bias', 'vision_model.encoder.layers.11.self_attn.k_proj.weight', 'vision_model.encoder.layers.11.self_attn.out_proj.bias', 'vision_model.encoder.layers.11.self_attn.out_proj.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.bias', 'vision_model.encoder.layers.11.self_attn.q_proj.weight', 'vision_model.encoder.layers.11.self_attn.v_proj.bias', 'vision_model.encoder.layers.11.self_attn.v_proj.weight', 'vision_model.encoder.layers.2.layer_norm1.bias', 'vision_model.encoder.layers.2.layer_norm1.weight', 'vision_model.encoder.layers.2.layer_norm2.bias', 'vision_model.encoder.layers.2.layer_norm2.weight', 'vision_model.encoder.layers.2.mlp.fc1.bias', 'vision_model.encoder.layers.2.mlp.fc1.weight', 'vision_model.encoder.layers.2.mlp.fc2.bias', 'vision_model.encoder.layers.2.mlp.fc2.weight', 'vision_model.encoder.layers.2.self_attn.k_proj.bias', 'vision_model.encoder.layers.2.self_attn.k_proj.weight', 'vision_model.encoder.layers.2.self_attn.out_proj.bias', 'vision_model.encoder.layers.2.self_attn.out_proj.weight', 'vision_model.encoder.layers.2.self_attn.q_proj.bias', 'vision_model.encoder.layers.2.self_attn.q_proj.weight', 'vision_model.encoder.layers.2.self_attn.v_proj.bias', 'vision_model.encoder.layers.2.self_attn.v_proj.weight', 'vision_model.encoder.layers.3.layer_norm1.bias', 'vision_model.encoder.layers.3.layer_norm1.weight', 'vision_model.encoder.layers.3.layer_norm2.bias', 'vision_model.encoder.layers.3.layer_norm2.weight', 'vision_model.encoder.layers.3.mlp.fc1.bias', 'vision_model.encoder.layers.3.mlp.fc1.weight', 'vision_model.encoder.layers.3.mlp.fc2.bias', 'vision_model.encoder.layers.3.mlp.fc2.weight', 'vision_model.encoder.layers.3.self_attn.k_proj.bias', 'vision_model.encoder.layers.3.self_attn.k_proj.weight', 'vision_model.encoder.layers.3.self_attn.out_proj.bias', 'vision_model.encoder.layers.3.self_attn.out_proj.weight', 'vision_model.encoder.layers.3.self_attn.q_proj.bias', 'vision_model.encoder.layers.3.self_attn.q_proj.weight', 'vision_model.encoder.layers.3.self_attn.v_proj.bias', 'vision_model.encoder.layers.3.self_attn.v_proj.weight', 'vision_model.encoder.layers.4.layer_norm1.bias', 'vision_model.encoder.layers.4.layer_norm1.weight', 'vision_model.encoder.layers.4.layer_norm2.bias', 'vision_model.encoder.layers.4.layer_norm2.weight', 'vision_model.encoder.layers.4.mlp.fc1.bias', 'vision_model.encoder.layers.4.mlp.fc1.weight', 'vision_model.encoder.layers.4.mlp.fc2.bias', 'vision_model.encoder.layers.4.mlp.fc2.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.bias', 'vision_model.encoder.layers.4.self_attn.k_proj.weight', 'vision_model.encoder.layers.4.self_attn.out_proj.bias', 'vision_model.encoder.layers.4.self_attn.out_proj.weight', 'vision_model.encoder.layers.4.self_attn.q_proj.bias', 'vision_model.encoder.layers.4.self_attn.q_proj.weight', 'vision_model.encoder.layers.4.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.self_attn.v_proj.weight', 'vision_model.encoder.layers.5.layer_norm1.bias', 'vision_model.encoder.layers.5.layer_norm1.weight', 'vision_model.encoder.layers.5.layer_norm2.bias', 'vision_model.encoder.layers.5.layer_norm2.weight', 'vision_model.encoder.layers.5.mlp.fc1.bias', 'vision_model.encoder.layers.5.mlp.fc1.weight', 'vision_model.encoder.layers.5.mlp.fc2.bias', 'vision_model.encoder.layers.5.mlp.fc2.weight', 'vision_model.encoder.layers.5.self_attn.k_proj.bias', 'vision_model.encoder.layers.5.self_attn.k_proj.weight', 'vision_model.encoder.layers.5.self_attn.out_proj.bias', 'vision_model.encoder.layers.5.self_attn.out_proj.weight', 'vision_model.encoder.layers.5.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.self_attn.q_proj.weight', 'vision_model.encoder.layers.5.self_attn.v_proj.bias', 'vision_model.encoder.layers.5.self_attn.v_proj.weight', 'vision_model.encoder.layers.6.layer_norm1.bias', 'vision_model.encoder.layers.6.layer_norm1.weight', 'vision_model.encoder.layers.6.layer_norm2.bias', 'vision_model.encoder.layers.6.layer_norm2.weight', 'vision_model.encoder.layers.6.mlp.fc1.bias', 'vision_model.encoder.layers.6.mlp.fc1.weight', 'vision_model.encoder.layers.6.mlp.fc2.bias', 'vision_model.encoder.layers.6.mlp.fc2.weight', 'vision_model.encoder.layers.6.self_attn.k_proj.bias', 'vision_model.encoder.layers.6.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.self_attn.out_proj.bias', 'vision_model.encoder.layers.6.self_attn.out_proj.weight', 'vision_model.encoder.layers.6.self_attn.q_proj.bias', 'vision_model.encoder.layers.6.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.self_attn.v_proj.bias', 'vision_model.encoder.layers.6.self_attn.v_proj.weight', 'vision_model.encoder.layers.7.layer_norm1.bias', 'vision_model.encoder.layers.7.layer_norm1.weight', 'vision_model.encoder.layers.7.layer_norm2.bias', 'vision_model.encoder.layers.7.layer_norm2.weight', 'vision_model.encoder.layers.7.mlp.fc1.bias', 'vision_model.encoder.layers.7.mlp.fc1.weight', 'vision_model.encoder.layers.7.mlp.fc2.bias', 'vision_model.encoder.layers.7.mlp.fc2.weight', 'vision_model.encoder.layers.7.self_attn.k_proj.bias', 'vision_model.encoder.layers.7.self_attn.k_proj.weight', 'vision_model.encoder.layers.7.self_attn.out_proj.bias', 'vision_model.encoder.layers.7.self_attn.out_proj.weight', 'vision_model.encoder.layers.7.self_attn.q_proj.bias', 'vision_model.encoder.layers.7.self_attn.q_proj.weight', 'vision_model.encoder.layers.7.self_attn.v_proj.bias', 'vision_model.encoder.layers.7.self_attn.v_proj.weight', 'vision_model.encoder.layers.8.layer_norm1.bias', 'vision_model.encoder.layers.8.layer_norm1.weight', 'vision_model.encoder.layers.8.layer_norm2.bias', 'vision_model.encoder.layers.8.layer_norm2.weight', 'vision_model.encoder.layers.8.mlp.fc1.bias', 'vision_model.encoder.layers.8.mlp.fc1.weight', 'vision_model.encoder.layers.8.mlp.fc2.bias', 'vision_model.encoder.layers.8.mlp.fc2.weight', 'vision_model.encoder.layers.8.self_attn.k_proj.bias', 'vision_model.encoder.layers.8.self_attn.k_proj.weight', 'vision_model.encoder.layers.8.self_attn.out_proj.bias', 'vision_model.encoder.layers.8.self_attn.out_proj.weight', 'vision_model.encoder.layers.8.self_attn.q_proj.bias', 'vision_model.encoder.layers.8.self_attn.q_proj.weight', 'vision_model.encoder.layers.8.self_attn.v_proj.bias', 'vision_model.encoder.layers.8.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.layer_norm1.bias', 'vision_model.encoder.layers.9.layer_norm1.weight', 'vision_model.encoder.layers.9.layer_norm2.bias', 'vision_model.encoder.layers.9.layer_norm2.weight', 'vision_model.encoder.layers.9.mlp.fc1.bias', 'vision_model.encoder.layers.9.mlp.fc1.weight', 'vision_model.encoder.layers.9.mlp.fc2.bias', 'vision_model.encoder.layers.9.mlp.fc2.weight', 'vision_model.encoder.layers.9.self_attn.k_proj.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.weight', 'vision_model.encoder.layers.9.self_attn.out_proj.bias', 'vision_model.encoder.layers.9.self_attn.out_proj.weight', 'vision_model.encoder.layers.9.self_attn.q_proj.bias', 'vision_model.encoder.layers.9.self_attn.q_proj.weight', 'vision_model.encoder.layers.9.self_attn.v_proj.bias', 'vision_model.encoder.layers.9.self_attn.v_proj.weight', 'vision_model.post_layernorm.bias', 'vision_model.post_layernorm.weight', 'vision_model.pre_layrnorm.bias', 'vision_model.pre_layrnorm.weight', 'visual_projection.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.