E3D-LSTM
E3D-LSTM copied to clipboard
Unofficial PyTorch implementation of E3D-LSTM
Eidetic 3D LSTM in PyTorch
This is an unofficial and partial PyTorch implementation of "Eidetic 3D LSTM: A Model for Video Prediction and Beyond" [1]
Implementeds E3D-LSTM and a trainer for traffic flow prediction on TaxiBJ dataset[2]

Modifications
- By default uses a cheaper "Scaled Dot-Product"[3] attention.
- Adds more "LayerNorm"[4] for faster training.
Installation
-
Download TaxiBJ[2] dataset into
./data/
folder. - Install dependencies from
Pipfile
. By default installs CPU-only Pytorch.
Usage
python src/trainer.py
Todo
- [ ] Fix TODOs
- [ ] Do qualitative verification.
- [ ] Introduce configs
- [ ] Add visuals.
References
[1] Y Wang, L Jiang, MH Yang, LJ Li, M Long, L Fei-Fei. Eidetic 3D LSTM: A Model for Video Prediction and Beyond.
[2] Junbo Zhang, Yu Zheng, Dekang Qi. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.
[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need.
[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.