meton-robean
meton-robean
### cake pattern更多资料 wiki:https://github.com/Intensivate/learning-journey/wiki/Cake-Pattern
strober: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-163.pdf
Golden Gate: https://davidbiancolin.github.io/papers/goldengate-iccad19.pdf
这里介绍了几种仿真工具和case study https://escholarship.org/uc/item/0vt3c73p
### 同步IO之 Blocking IO 
### 同步IO之 NonBlocking IO 
### 同步IO之 IO多路复用  IO多路复用,就是我们熟知的select、poll、epoll模型。从图上可见,在IO多路复用的时候,process在两个处理阶段都是block住等待的。初看好像IO多路复用没什么用,其实select、poll、epoll的优势在于可以以较少的代价来同时监听处理多个IO。 - **多路复用:** 与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。 - **关于selcet, poll的缺点:** 0. poll的实现和select非常相似,只是描述fd集合的方式不同,poll使用pollfd结构而不是select的fd_set结构,其他的都差不多。 1. 每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大 2.同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大 3.select支持的文件描述符数量太小了,默认是1024 - **epoll的改进:** epoll提供了三个函数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。 1. 对于前面第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝一次。 2. 对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。 3.对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。 **总结:** (1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。 (2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。 摘自https://www.cnblogs.com/anker/p/3265058.html
### 异步IO:  异步IO要求process在recvfrom操作的两个处理阶段上都不能等待,也就是process调用recvfrom后立刻返回,kernel自行去准备好数据并将数据从kernel的buffer中copy到process的buffer在通知process读操作完成了,然后process在去处理。遗憾的是,linux的网络IO中是不存在异步IO的,linux的网络IO处理的第二阶段总是阻塞等待数据copy完成的。真正意义上的网络异步IO是Windows下的IOCP(IO完成端口)模型。
### 总的比较: 
分类中为什么不用均方差损失?上文在介绍均方差损失的时候讲到**实际上均方差损失假设了误差服从高斯分布,在分类任务下这个假设没办法被满足,因此效果会很差**。为什么是交叉熵损失呢?有两个角度可以解释这个事情,一个角度从最大似然的角度,也就是我们上面的推导;另一个角度是可以用信息论来解释交叉熵损失。通过**最小化交叉熵的角度推导出来的结果和使用最大 化似然得到的结果是一致的。**