meshzoo


When generating meshes for FEM/FVM computations, sometimes your geometry is so simple
that you don't need a complex mesh generator (like
pygmsh,
MeshPy,
mshr,
pygalmesh,
dmsh),
but something simple and fast that makes use of the structure of the domain. Enter
meshzoo.
Examples
Triangle
import meshzoo
bary, cells = meshzoo.triangle(8)
# corners = numpy.array(
# [
# [0.0, -0.5 * numpy.sqrt(3.0), +0.5 * numpy.sqrt(3.0)],
# [1.0, -0.5, -0.5],
# ]
# )
# points = numpy.dot(corners, bary).T
# Process the mesh, e.g., write it to a file using meshio
# meshio.write_points_cells("triangle.vtk", points, {"triangle": cells})
Rectangle
import meshzoo
import numpy as np
points, cells = meshzoo.rectangle_tri(
np.linspace(0.0, 1.0, 11),
np.linspace(0.0, 1.0, 11),
variant="zigzag", # or "up", "down", "center"
)
points, cells = meshzoo.rectangle_quad(
np.linspace(0.0, 1.0, 11),
np.linspace(0.0, 1.0, 11),
cell_type="quad4", # or "quad8", "quad9"
)
Regular polygon
 |
 |
 |
meshzoo.ngon(4, 8) |
meshzoo.ngon(6, 8) |
meshzoo.ngon(9, 8) |
import meshzoo
points, cells = meshzoo.ngon(5, 11)
Disk
 |
 |
 |
meshzoo.disk(4, 8) |
meshzoo.disk(6, 8) |
meshzoo.disk(9, 8) |
The disk meshes are inflations of regular polygons.
import meshzoo
points, cells = meshzoo.disk(6, 11)
points, cells = meshzoo.disk_quad(10, cell_type="quad4") # or "quad8", "quad9"
Möbius strip
import meshzoo
points, cells = meshzoo.moebius(num_twists=1, nl=60, nw=11)
Sphere (surface)
import meshzoo
points, cells = meshzoo.uv_sphere(num_points_per_circle=20, num_circles=10, radius=1.0)
points, tri, quad = meshzoo.geo_sphere(
num_points_per_circle=20, num_circles=10, radius=1.0
)
Spheres can also be generated by refining the faces of platonic
solids and then "inflating" them. meshzoo
implements a few of them. The sphere generated from the icosahedron has the
highest-quality (most equilateral) triangles.
All cells are oriented such that its normals point outwards.
 |
 |
 |
meshzoo.tetra_sphere(10) |
meshzoo.octa_sphere(10) |
meshzoo.icosa_sphere(10) |
Ball (solid)
import meshzoo
points, cells = meshzoo.ball_tetra(10)
points, cells = meshzoo.ball_hexa(10)
Tube
import meshzoo
points, cells = meshzoo.tube(length=1.0, radius=1.0, n=30)
Cube
import meshzoo
import numpy as np
points, cells = meshzoo.cube_tetra(
np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11)
)
points, cells = meshzoo.cube_hexa(
np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11), np.linspace(0.0, 1.0, 11)
)