mem0
mem0 copied to clipboard
getting validation error in m.search method
🐛 Describe the bug
the following is my config.
config = {
"vector_store": {
"provider": "langchain",
"config": {
"client": vector_store
}
},
"llm": {
"provider": "groq",
"config": {
"model": "llama3-8b-8192",
"temperature": 0.1,
"max_tokens": 2000,
}
},
"embedder": {
"provider": "ollama",
"config": {
"model": "nomic-embed-text:latest",
"ollama_base_url": "http://localhost:11434",
},
},
}
# Initialize Memory with the configuration
m = Memory.from_config(config)
messages = [
{"role": "user", "content": "I'm planning to watch a movie tonight. Any recommendations?"},
{"role": "assistant", "content": "How about a thriller movies? They can be quite engaging."},
{"role": "user", "content": "I'm not a big fan of thriller movies but I love sci-fi movies."},
{"role": "assistant", "content": "Got it! I'll avoid thriller recommendations and suggest sci-fi movies in the future."}
]
m.add(messages, user_id="alice", metadata={"category": "movies"})
related_memories = m.search("suggest me a good movie", user_id="alice"
this gives me the error
ValidationError: 1 validation error for MemoryItem
id
Input should be a valid string [type=string_type, input_value=None, input_type=NoneType]
Hey @ragesh-beo I don't think Langchain is vector_store, it is a LLM framework. Try using a valid vector store like qdrant, pinecone, pgvector etc.
Thanks for the response @Vikas-ai56 But actually the vector store I used was Chrom Db using lanchain. Exactly as in the tutorial https://docs.mem0.ai/components/vectordbs/dbs/langchain The only difference is, instead of OpenAIEmbeddings I have used OllamaEmbeddings.
same issue