mem0
mem0 copied to clipboard
`llama-index-memory-mem0`: embedding dimension is always 0
🐛 Describe the bug
from llama_index.core import Settings
from llama_index.memory.mem0 import Mem0Memory
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.openai_like import OpenAILike
from llama_index.agent.openai import OpenAIAgent
Settings.llm = OpenAILike(
model="llama3.1",
api_base="http://localhost:11434/v1",
api_key="ollama",
is_function_calling_model=True,
is_chat_model=True,
)
Settings.embed_model = OllamaEmbedding(
model_name="nomic-embed-text:latest",
)
memory_from_config = Mem0Memory.from_config(
config={
"vector_store": {
"provider": "qdrant",
"config": {
"collection_name": "temp",
"embedding_model_dims": 768, # Change this according to your local model's dimensions
},
},
"llm": {
"provider": "ollama",
"config": {
"model": "llama3.1",
"temperature": 0,
"max_tokens": 8000,
"ollama_base_url": "http://localhost:11434",
},
},
"embedder": {
"provider": "ollama",
"config": {
"model": "nomic-embed-text:latest",
"ollama_base_url": "http://localhost:11434",
"embedding_dims": 768, # Change this according to your local model's dimensions
},
},
},
context={"user_id": "test"},
)
agent_runner = OpenAIAgent.from_tools(
memory=memory_from_config,
)
if __name__ == "__main__":
agent_runner.chat("Hi!")
Observed:
File ".../.venv/lib/python3.12/site-packages/qdrant_client/local/distances.py", line 94, in cosine_similarity
return np.dot(vectors, query)
^^^^^^^^^^^^^^^^^^^^^^
ValueError: shapes (0,768) and (0,) not aligned: 768 (dim 1) != 0 (dim 0)
Expected: No exceptions.
Versions:
requires-python = ">=3.12,<3.13"
name = "llama-index-memory-mem0"
version = "0.2.0"
name = "llama-index"
version = "0.12.1"
name = "mem0ai"
version = "0.1.32"
Hi @tslmy Currently we don't support OpenAIAgent on llama-index. We will increase support to more agents. Please refer this documentation: https://docs.mem0.ai/integrations/llama-index
@spike-spiegel-21 , thanks. That's totally fine. I kinda wished it was more explicit from the docs.