YOLOv6
YOLOv6 copied to clipboard
【YOLOv6 VS PP-YOLOE s(400 epoch) Update】官方性能实测更新 / Update of the Official Performance Comparison
Update of the Test Result after Training 400 Epoch of PP-YOLOE s
Here is the latest comparison result:
Model | epoch | AP 0.5:0.95 | AP 0.5 | AP 0.75 | AP small | AP medium | AP large | AR small | AR medium | AR large |
---|---|---|---|---|---|---|---|---|---|---|
PP-YOLOE s | 300 | 43.0 | 59.6 | 47.2 | 26.0 | 47.4 | 58.7 | 45.1 | 70.6 | 81.4 |
PP-YOLOE s | 400 | 43.4 | 60.0 | 47.5 | 25.7 | 47.8 | 59.2 | 43.9 | 70.8 | 81.9 |
YOLOv6 s | 400 | 43.1 | 62.0 | 46.2 | 23.9 | 47.4 | 58.8 | 40.2 | 65.5 | 76.4 |
Feel free to raise any question or suggestion about the result~ PP-YOLOE always respect the original work of YOLO series and we'll keep working on providing more high-quality models.
For more reference: https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe
The original issue with complete test result: https://github.com/meituan/YOLOv6/issues/140
性能对比测试数据更新(PP-YOLOE s训练400 epoch后)
2022.7.5日更新:
由于收到大家的反馈,我们训练针对PP-YOLOE s版本训练了400 epoch,以下是对比效果:
模型 | epoch | AP 0.5:0.95 | AP 0.5 | AP 0.75 | AP small | AP medium | AP large | AR small | AR medium | AR large |
---|---|---|---|---|---|---|---|---|---|---|
PP-YOLOE s | 300 | 43.0 | 59.6 | 47.2 | 26.0 | 47.4 | 58.7 | 45.1 | 70.6 | 81.4 |
PP-YOLOE s | 400 | 43.4 | 60.0 | 47.5 | 25.7 | 47.8 | 59.2 | 43.9 | 70.8 | 81.9 |
YOLOv6 s | 400 | 43.1 | 62.0 | 46.2 | 23.9 | 47.4 | 58.8 | 40.2 | 65.5 | 76.4 |
大家有任何问题欢迎在评论区中讨论提出~
PP-YOLOE始终保持着向YOLO系列的致敬,希望大家能多多尝试,提出宝贵的建议!
如需获取完整的对比测试,请参考原始issue:https://github.com/meituan/YOLOv6/issues/140
美团:这是来砸场子的吗Σ(⊙▽⊙"a
美团:这是来砸场子的吗Σ(⊙▽⊙"a
再来个yolov7的对比就更有意思了 : P