DetNAS
DetNAS copied to clipboard
HELP!many issuea,but i flow your tips
$ bash scripts/run_detnas_coco_fpn_300M_search.sh
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
_compile_and_register_class(obj, _rcb, qualified_name)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class _jit_script_class_compile(qualified_name, ast, rcb) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn return torch.jit.script(fn, _rcb=rcb) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj)) RuntimeError: builtin cannot be used as a value: at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, ~~~~~~~~~~~~~ <--- HERE device=tensor.device, pin_memory=tensor.is_pinned()) 'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call' at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
import torchvision File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in <module>
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
builtin cannot be used as a value: at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, ~~~~~~~~~~~~~ <--- HERE device=tensor.device, pin_memory=tensor.is_pinned()) 'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call' at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script _compile_and_register_class(obj, _rcb, qualified_name) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class _jit_script_class_compile(qualified_name, ast, rcb) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn _compile_and_register_class(obj, _rcb, qualified_name)return torch.jit.script(fn, _rcb=rcb) _jit_script_class_compile(qualified_name, ast, rcb) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class return torch.jit.script(fn, _rcb=rcb) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj)) RuntimeError: _jit_script_class_compile(qualified_name, ast, rcb) builtin cannot be used as a value: at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, ~~~~~~~~~~~~~ <--- HERE device=tensor.device, pin_memory=tensor.is_pinned()) 'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call' at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn return torch.jit.script(fn, _rcb=rcb) File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj)) RuntimeError: builtin cannot be used as a value: at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, ~~~~~~~~~~~~~ <--- HERE device=tensor.device, pin_memory=tensor.is_pinned()) 'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call' at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError: builtin cannot be used as a value: at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, ~~~~~~~~~~~~~ <--- HERE device=tensor.device, pin_memory=tensor.is_pinned()) 'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call' at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx_per_image = positive[perm1]
neg_idx_per_image = negative[perm2]
# create binary mask from indices
pos_idx_per_image_mask = zeros_like(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE
matched_idxs_per_image, dtype=torch.uint8
)
neg_idx_per_image_mask = zeros_like(
matched_idxs_per_image, dtype=torch.uint8
)
pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
Traceback (most recent call last):
File "/mistgpu/miniconda/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/mistgpu/miniconda/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/distributed/launch.py", line 253, in
Sorry for the late reply. I thinks this issue might comes from the installation. Would you please show your torch and torchvision version?