mechigonft

Results 31 issues of mechigonft

假设我的数据集为: { "query": "query", "pos": ["A", "B", "C"], "neg": ["D", "E", "F"] } 我在训练的时候,拆成了3条训练数据: {"query":"query","pos":["A"],"neg":["D","E","F"]} {"query":"query","pos":["B"],"neg":["D","E","F"]} {"query":"query","pos":["C"],"neg":["D","E","F"]} 我发现:训练过程中,loss一直维持在2.5左右不下降,训练后的模型,在推理的时候,输出分数数据一致,都是2.861328125,没有区分度 ![没有区分度](https://github.com/FlagOpen/FlagEmbedding/assets/90537707/b8b0c2cc-db80-4bdb-8179-8452a56c5452) 是不是在训练reranker的时候,数据集不能拆分,因为在训练排序模型时,应该是按照pos集合的元素先后顺序给分,如果拆开的话,针对同一个query,会有不同的pos对应关系,训练时也会相互影响,是这个原因吗?

挖掘难负例报错: create index and search------------------ AttributeError: module 'faiss' has no attribute 'GpuMultipleClonerOptions' 已经安装了3个跟faiss有关的包,不知道还需要什么? $pip list | grep faiss autofaiss 2.15.8 faiss-cpu 1.7.4 faiss-gpu 1.7.2

query:请帮我找出大于0.5的数据 知识库:0.1,0.2,0.3,0.8,0.6 召回结果:0.6,0.8 向量模型能做到这种程度吗?

请问一下,reranker微调时,512长度的token的计算是将query和pos/neg直接相连接(add)然后计算的吗?代码层面有没有再添加一些过渡性的链接两者的短语/句子? 我的过滤训练数据的计算逻辑: from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('reranker路径') def get_token_count(query): return len(tokenizer(query)['input_ids']) query = 'xxx' pos = 'xxx' if get_token_count(query + pos) > 512: continue 我这边逻辑写的比较死,就是512,没有留缓冲,不知道代码里面有没有加默认的过渡性的链接两者的短语/句子?如果有的话,我就不能用512作为过滤的阈值了

我在复现https://github.com/Oneflow-Inc/one-glm项目时,报错: File "/ossfs/workspace/queryrewrite/model/one-glm-main/finetune_glm.py", line 304, in finetune flow.distributed.broadcast(train_iters, mpu.get_model_parallel_src_rank(), AttributeError: module 'oneflow.distributed' has no attribute 'broadcast' 我是用的oneflow版本是0.9.0,请问什么原因?

bug
community

### Description Can one-flow improve the inference speed of glm-large-chinese model?one-flow是否能提升glm-large-chinese模型的推理速度 ### Alternatives Can one-flow improve the inference speed of glm-large-chinese model?one-flow是否能提升glm-large-chinese模型的推理速度

报错:Traceback (most recent call last): File "/ossfs/workspace/vector/model/GLM-main/finetune_glm.py", line 470, in main(args) File "/ossfs/workspace/vector/model/GLM-main/tasks/superglue/finetune.py", line 119, in main finetune(args, train_valid_datasets_provider, model_kwargs, File "/ossfs/workspace/vector/model/GLM-main/finetune_glm.py", line 297, in finetune train_dataset, valid_dataset = train_valid_datasets_provider(args,...

只有10b的config.json(config_tasks/config_blocklm_10B.json),没有其他模型的config.json