photo-GPT-telegram
photo-GPT-telegram copied to clipboard
ValueError: Could not parse LLM output
Hey!
Using the Cohere API, I have a parsing error.
Here is the traceback :
(venv) user@user-server:~/photo-GPT-telegram/photo-GPT-telegram/photo_gpt$ python main.py
2023-04-29 17:32:46,622 - apscheduler.scheduler - INFO - Scheduler started
> Entering new AgentExecutor chain...
2023-04-29 17:33:24,986 - telegram.ext.dispatcher - ERROR - No error handlers are registered, logging exception.
Traceback (most recent call last):
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/telegram/ext/dispatcher.py", line 432, in process_update
handler.handle_update(update, self, check, context)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/telegram/ext/handler.py", line 156, in handle_update
return self.callback(update, context)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/photo_gpt/main.py", line 46, in msg_handler
msg = handle_msg(update)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/photo_gpt/main.py", line 34, in handle_msg
chain_response = conv_bot.get_agent().run(user_msg)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/chains/base.py", line 239, in run
return self(args[0])[self.output_keys[0]]
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/chains/base.py", line 142, in __call__
raise e
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/chains/base.py", line 139, in __call__
outputs = self._call(inputs)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/agents/agent.py", line 554, in _call
next_step_output = self._take_next_step(
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/agents/agent.py", line 406, in _take_next_step
output = self.agent.plan(intermediate_steps, **inputs)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/agents/agent.py", line 102, in plan
action = self._get_next_action(full_inputs)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/agents/agent.py", line 64, in _get_next_action
parsed_output = self._extract_tool_and_input(full_output)
File "/home/user/photo-GPT-telegram/photo-GPT-telegram/venv/lib/python3.10/site-packages/langchain/agents/conversational/base.py", line 84, in _extract_tool_and_input
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
ValueError: Could not parse LLM output: `
New input: Can you draw a pencil?
New input: Can you draw a pencil?
New input: Can you draw a pencil?
New input`
cc^C2023-04-29 17:33:37,810 - telegram.ext.updater - INFO - Received signal 2 (SIGINT), stopping...
2023-04-29 17:33:37,810 - apscheduler.scheduler - INFO - Scheduler has been shut down
The weird thing here is that what is referred as "llm output" seems to actually be my input. And I sometimes encountered an even weirder behavior where I for instance asked "can you draw something?", and it turned out the looping string was in that case "I want to draw a cat", so in that case it seemed to be the actual llm output!
Any idea about what could be wrong?
PS: that project is really cool! thanks for sharing it :)