ml4iiot
ml4iiot copied to clipboard
A framework to implement Machine Learning methods for time series data.
Machine Learning 4 IIoT
This is the repository of ml4iiot
a framework to implement Machine Learning methods for time series data.
Example: Autoencoder on FFT of IMS Bearing Data Set
This example shows an autoencoder being trained on the Fast Fourier transform
of the acceleration of bearing 1 of the IMS Bearing Data Set.
The configuration of this experiment can be found in config/ims_bearing_data_set_autoencoder.yaml
.
The autoencoder learns (adjusts its weights) and predicts until the 2004-02-17
and after that does only predictions anymore (see do_fit
).
The results show that the upcoming crash shows up in an increasing reconstruction error of the autoencoder.
- Run IMS Bearing Data Set Autoencoder example:
python ml4iiot/cli_runner.py -c config/ims_bearing_data_set_autoencoder.yaml
- Plot acceleration of bearing 1:
python ml4iiot/plot_csv.py -p out/YYYY_MM_DD/ims_bearing_data_set/HH_MM_SS_csv_output.csv -itime acceleration_bearing_1
- Plot reconstruction error:
python ml4iiot/plot_csv.py -p out/YYYY_MM_DD/ims_bearing_data_set/HH_MM_SS_csv_output.csv -itime absolute_reconstruction_error_moving
Architecture
We abstract the entire process into a pipeline consisting of different processing steps. Each pipeline must have an input, an algorithm and an output step. Before and after the algorithm step there can be any number of pre- or post-processing steps.
A pipeline can configured using YAML or JSON files and can be started with the CLI runner.
The main abstraction between individual pipeline steps are pandas DataFrames. Each step can add additional columns to the dataframe but should not alter existing columns.
Development
Setup virtualenv
pip install virtualenv;
python -m virtualenv env;
source env/bin/activate;
Install dependencies
pip install -r requirements.txt;
pip install -e .;
Testing
Run unit tests with: python -m unittest discover tests/*
Leave virtualenv
-
deactivate
CLI runner
python ml4iiot/cli_runner.py -c config/your_config.yaml
Performance
Resample the training data in advance and use integer timestamps instead of formatted date strings to speed up trainings. Use the following commands to profile your code:
python -m cProfile -o out/cli_runner.profile ml4iiot/cli_runner.py -c config/your_config.yaml
snakeviz out/cli_runner.profile
Docker
version: '3'
services:
ml4iiot:
image: still/to/be/published
volumes:
- ./ml4iiot/config:/usr/src/ml4iiot/config
Pipeline configuration
A pipeline always consists of an input adapter, an output adapter as well as an algorithm in between.
pipeline:
input:
class: ml4iiot.input.csv.CsvInput
config:
windowing_strategy:
class: ml4iiot.input.windowing.CountBasedWindowingStrategy
config:
window_size: 100
stride_size: 100
batch_size: 20000
delimiter: ','
csv_file: /path/to/your/data.csv
index_column: time
columns:
time:
type: datetime
datetime_format: timestamp
sensor_value: float
algorithm:
class: ml4iiot.algorithm.stochastic.average.ExponentialWeightedMovingAverage
config:
column_mapping:
sensor_value: sensor_value_average
output:
class: ml4iiot.output.compound.CompoundOutput
config:
output_adapters:
- class: ml4iiot.output.std.StdOutput
config:
show_columns_progress:
- column: index
- column: sensor_value
- column: sensor_value_average
- class: ml4iiot.output.plot.PlotOutput
config:
show_plots: True
figures:
plots:
- column: sensor_value
color: blue
- column: sensor_value_average
color: red
Inputs
-
ml4iiot.input.csv.CsvInput
-
ml4iiot.input.kafka.KafkaInput
Windowing strategies
-
ml4iiot.input.windowing.TimeBasedWindowingStrategy
-
ml4iiot.input.windowing.CountBasedWindowingStrategy
Algorithms
-
ml4iiot.algorithm.stochastic.average.ExponentialWeightedMovingAverage
-
ml4iiot.algorithm.stochastic.average.ExponentialWeightedMovingMinMaxAverage
-
ml4iiot.algorithm.stochastic.mad.Mad
-
ml4iiot.algorithm.stochastic.zscore.ModifiedZScore
-
ml4iiot.algorithm.clustering.dbscan.DBSCAN
-
ml4iiot.algorithm.autoencoder.fullyconnected.FullyConnectedAutoencoder
-
ml4iiot.algorithm.autoencoder.cnn.CNNAutoencoder
-
ml4iiot.algorithm.autoencoder.cnn.BottleneckCNNAutoencoder
-
ml4iiot.algorithm.autoencoder.lstm.ReconstructionLSTMAutoencoder
-
ml4iiot.algorithm.autoencoder.lstm.PredictionLSTMAutoencoder
-
ml4iiot.algorithm.autoencoder.variational.VariationalAutoencoder
Processing
-
ml4iiot.processing.normalization.MinMaxScaler
-
ml4iiot.processing.smoothing.MovingExponentialSmoothing
-
ml4iiot.processing.transform.Average
-
ml4iiot.processing.transform.StandardDeviation
-
ml4iiot.processing.transform.Minimum
-
ml4iiot.processing.transform.Maximum
-
ml4iiot.processing.transform.FastFourierTransform
-
ml4iiot.processing.control.SkipDataFrame
Outputs
-
ml4iiot.output.compound.CompoundOutput
-
ml4iiot.output.std.StdOutput
-
ml4iiot.output.plot.PlotOutput
-
ml4iiot.output.csv.CsvOutput
-
ml4iiot.output.kafka.KafkaOutput
-
ml4iiot.output.config.ConfigOutput