coref-hoi
coref-hoi copied to clipboard
Train on spanbert large, but get F1 1 point lower than presented in paprer
Hi,
I use spanbert large model with default parameters in config file, and I get Avg F1 78.27, lower than Avg.F1 79.9 in paper. config as following:
num_docs = 2802 bert_learning_rate = 1e-05 task_learning_rate = 0.0003 max_segment_len = 512 ffnn_size = 3000 cluster_ffnn_size = 3000 max_training_sentences = 3 bert_tokenizer_name = bert-base-cased
max_top_antecedents = 50 max_training_sentences = 5 top_span_ratio = 0.4 max_num_extracted_spans = 3900 max_num_speakers = 20 max_segment_len = 256
Learning
bert_learning_rate = 1e-5 task_learning_rate = 2e-4 loss_type = marginalized # {marginalized, hinge} mention_loss_coef = 0 false_new_delta = 1.5 # For loss_type = hinge adam_eps = 1e-6 adam_weight_decay = 1e-2 warmup_ratio = 0.1 max_grad_norm = 1 # Set 0 to disable clipping gradient_accumulation_steps = 1
Model hyperparameters.
coref_depth = 1 # when 1: no higher order (except for cluster_merging) higher_order = attended_antecedent # {attended_antecedent, max_antecedent, entity_equalization, span_clustering, cluster_merging} coarse_to_fine = true fine_grained = true dropout_rate = 0.3 ffnn_size = 1000 ffnn_depth = 1 cluster_ffnn_size = 1000 # For cluster_merging cluster_reduce = mean # For cluster_merging easy_cluster_first = false # For cluster_merging cluster_dloss = false # cluster_merging num_epochs = 24 feature_emb_size = 20 max_span_width = 30 use_metadata = true use_features = true use_segment_distance = true model_heads = true use_width_prior = true # For mention score use_distance_prior = true # For mention-ranking score
Other.
conll_eval_path = dev.english.v4_gold_conll # gold_conll file for dev conll_test_path = test.english.v4_gold_conll # gold_conll file for test genres = ["bc", "bn", "mz", "nw", "pt", "tc", "wb"] eval_frequency = 1000 report_frequency = 100