option-critic-pytorch
                                
                                 option-critic-pytorch copied to clipboard
                                
                                    option-critic-pytorch copied to clipboard
                            
                            
                            
                        Biased gradients
you need to re-evaluate the features/state after the optimization step optim.step() because that updates the feature layer hence the features themselves
Hey @manuel-delverme. Do you mean moving lines 112-114
state = option_critic.get_state(to_tensor(next_obs))
option_termination, greedy_option = option_critic.predict_option_termination(state, current_option)
following the optimisation step?
Fixed as of the latest commit