ring_redis icon indicating copy to clipboard operation
ring_redis copied to clipboard

a python package in pure python; a lightweight, high available & extensible cache solution using redis

RING REDIS

What for:

I want a lightweight, High Available & Extensible cache solution using redis, but nutcracker is too heavy for a system with only 2 or 3 application servers and 2 or 3 redis instances. and there isnt a good enough implementation of consistant hash using pure python. so I wrote this. I used it in 2 project and they are running well till now when half a year passed. so I shared it for people who have the same requirement.

Features:

  • lightweight & pure python solution
  • auto eject & rediscover redis nodes
  • O(log(slice_number)) time complexity for a consistant hash calculation. (slice_number = max(2000, 200 * node_number))
  • O(slice_number * log(slice_number)) time complexity for hash ring rebuilding.
  • use O(slice_number) memory space always.

API list:

  • redis_dict(redis_confs, prefix='', key=str, expire=None, on_fail=None, on_node_ejected=None, on_node_rediscovered=None, retry_ratio=1e-2, hash_function=crc32): construct a redis_dict instance, which can be used as a normal python dict
  • some_redis_dict_instance.visit_redis(cmd, k, args): visit lower level redis apis
  • some_redis_dict_instance.get_entry(k): return the really redis entry of k
  • some_redis_dict_instance.alive_hash(redis_entry): return the node name for redis_entry via alive_hash
  • some_redis_dict_instance.total_hash(redis_entry): return the node name for redis_entry via total_hash
  • len(some_redis_dict_instance.alive_hash): return the alive nodes number

Install

via pip

pip install ring_redis

via source code

cd path/to/ring_redis
python setup.py install

How to use:

################### your redis configuration #####################

REDIS_CONF = {
	'group0' : {
		'node0': {
			'capacity': 50 * 1024 ** 2,
			'connection': {
				'host' : '192.168.230.45',
				'port' : 15061,
				'db': 0,
				'socket_timeout': 5e-3,
			},
		},
		'node1': {
			'capacity': 50 * 1024 ** 2,
			'connection': {
				'host' : '192.168.230.46',
				'port' : 15061,
				'db': 0,
				'socket_timeout': 5e-3,
			},
		},
	},
}

############################ useage ##############################

from ring_redis import redis_dict

test = redis_dict(REDIS_CONF['group0'], prefix='test.', expire=20)

test['a'] = 'abc'
print("test['a'] : %s" % (test['a']))

print("len(test) : %s" % (len(test)))
print("test.keys() : %s" % (test.keys()[:100]))
print("'a' in test? : %s" % ('a' in test))
print("'b' in test? : %s" % ('b' in test))

print("test.visit_redis('incr', 'x', 1) : %s" % (test.visit_redis('incr', 'x', 1)))
print("test.get_entry('x') : %s" % (test.get_entry('x')))
print("test.total_hash(test.get_entry('x')) : %s" % (test.total_hash(test.get_entry('x'))))
print("test.alive_hash(test.get_entry('x')) : %s" % (test.alive_hash(test.get_entry('x'))))

Notice:

  • The really redis entry equals to the dict key only if prefix + key(dict_key) == redis_entry
  • The configuration field 'socket_timeout' in REDIS_CONF should be choosed carefully, do some test yourself to findout the expected time(in seconds, depending on your network delay & bandwidth) needed for your biggest data case.
  • Python built-in function hash is neither consistant nor equally distributed, so don't use it as hash_function.
  • If non instance of the redis cluster available, exception RedisClusterUnavailable will be raised, you should pass on_fail as argument of redis_dict constructor or catch this exception to handler this situation yourself.