DALLE2-pytorch icon indicating copy to clipboard operation
DALLE2-pytorch copied to clipboard

About the weight file of prior

Open Qusijia opened this issue 2 years ago • 2 comments

Hello, thank you very much for your work! I would like to use the pre trained prior model for my own research and would like to ask which link is the weight file for you?

Qusijia avatar Aug 23 '23 07:08 Qusijia

I'm busy now. 2 days later I will send you. thx.

AIDevMonster avatar Aug 24 '23 12:08 AIDevMonster

Hi @AIDevMonster ,

Could you provide some example code for using the pre-trained vit-b-32 prior model? I have downloaded the checkpoints from https://huggingface.co/nousr/conditioned-prior/tree/main/vit-b-32. However, the readme only shows the usage of loading ViT-L/14 checkpoints. I try me best to adapt this code but it doesn't work.

This is very important for my research. Thanks a lot! The traceback is below. RuntimeError: Error(s) in loading state_dict for DiffusionPrior: Missing key(s) in state_dict: "noise_scheduler.betas", "noise_scheduler.alphas_cumprod", "noise_scheduler.alphas_cumprod_prev", "noise_scheduler.sqrt_alphas_cumprod", "noise_scheduler.sqrt_one_minus_alphas_cumprod", "noise_scheduler.log_one_minus_alphas_cumprod", "noise_scheduler.sqrt_recip_alphas_cumprod", "noise_scheduler.sqrt_recipm1_alphas_cumprod", "noise_scheduler.posterior_variance", "noise_scheduler.posterior_log_variance_clipped", "noise_scheduler.posterior_mean_coef1", "noise_scheduler.posterior_mean_coef2", "noise_scheduler.p2_loss_weight", "net.null_text_encodings", "net.null_text_embeds", "net.null_image_embed", "net.causal_transformer.layers.0.0.norm.g", "net.causal_transformer.layers.0.0.to_out.1.g", "net.causal_transformer.layers.0.1.0.g", "net.causal_transformer.layers.0.1.3.g", "net.causal_transformer.layers.1.0.norm.g", "net.causal_transformer.layers.1.0.to_out.1.g", "net.causal_transformer.layers.1.1.0.g", "net.causal_transformer.layers.1.1.3.g", "net.causal_transformer.layers.2.0.norm.g", "net.causal_transformer.layers.2.0.to_out.1.g", "net.causal_transformer.layers.2.1.0.g", "net.causal_transformer.layers.2.1.3.g", "net.causal_transformer.layers.3.0.norm.g", "net.causal_transformer.layers.3.0.to_out.1.g", "net.causal_transformer.layers.3.1.0.g", "net.causal_transformer.layers.3.1.3.g", "net.causal_transformer.layers.4.0.norm.g", "net.causal_transformer.layers.4.0.to_out.1.g", "net.causal_transformer.layers.4.1.0.g", "net.causal_transformer.layers.4.1.3.g", "net.causal_transformer.layers.5.0.norm.g", "net.causal_transformer.layers.5.0.to_out.1.g", "net.causal_transformer.layers.5.1.0.g", "net.causal_transformer.layers.5.1.3.g", "net.causal_transformer.layers.6.0.norm.g", "net.causal_transformer.layers.6.0.to_out.1.g", "net.causal_transformer.layers.6.1.0.g", "net.causal_transformer.layers.6.1.3.g", "net.causal_transformer.layers.7.0.norm.g", "net.causal_transformer.layers.7.0.to_out.1.g", "net.causal_transformer.layers.7.1.0.g", "net.causal_transformer.layers.7.1.3.g", "net.causal_transformer.layers.8.0.norm.g", "net.causal_transformer.layers.8.0.to_out.1.g", "net.causal_transformer.layers.8.1.0.g", "net.causal_transformer.layers.8.1.3.g", "net.causal_transformer.layers.9.0.norm.g", "net.causal_transformer.layers.9.0.to_out.1.g", "net.causal_transformer.layers.9.1.0.g", "net.causal_transformer.layers.9.1.3.g", "net.causal_transformer.layers.10.0.norm.g", "net.causal_transformer.layers.10.0.to_out.1.g", "net.causal_transformer.layers.10.1.0.g", "net.causal_transformer.layers.10.1.3.g", "net.causal_transformer.layers.11.0.norm.g", "net.causal_transformer.layers.11.0.to_out.1.g", "net.causal_transformer.layers.11.1.0.g", "net.causal_transformer.layers.11.1.3.g", "net.causal_transformer.norm.g". Unexpected key(s) in state_dict: "betas", "alphas_cumprod", "alphas_cumprod_prev", "sqrt_alphas_cumprod", "sqrt_one_minus_alphas_cumprod", "log_one_minus_alphas_cumprod", "sqrt_recip_alphas_cumprod", "sqrt_recipm1_alphas_cumprod", "posterior_variance", "posterior_log_variance_clipped", "posterior_mean_coef1", "posterior_mean_coef2", "net.causal_transformer.layers.0.0.norm.gamma", "net.causal_transformer.layers.0.0.norm.beta", "net.causal_transformer.layers.0.0.to_out.1.gamma", "net.causal_transformer.layers.0.0.to_out.1.beta", "net.causal_transformer.layers.0.1.0.gamma", "net.causal_transformer.layers.0.1.0.beta", "net.causal_transformer.layers.0.1.3.gamma", "net.causal_transformer.layers.0.1.3.beta", "net.causal_transformer.layers.1.0.norm.gamma", "net.causal_transformer.layers.1.0.norm.beta", "net.causal_transformer.layers.1.0.to_out.1.gamma", "net.causal_transformer.layers.1.0.to_out.1.beta", "net.causal_transformer.layers.1.1.0.gamma", "net.causal_transformer.layers.1.1.0.beta", "net.causal_transformer.layers.1.1.3.gamma", "net.causal_transformer.layers.1.1.3.beta", "net.causal_transformer.layers.2.0.norm.gamma", "net.causal_transformer.layers.2.0.norm.beta", "net.causal_transformer.layers.2.0.to_out.1.gamma", "net.causal_transformer.layers.2.0.to_out.1.beta", "net.causal_transformer.layers.2.1.0.gamma", "net.causal_transformer.layers.2.1.0.beta", "net.causal_transformer.layers.2.1.3.gamma", "net.causal_transformer.layers.2.1.3.beta", "net.causal_transformer.layers.3.0.norm.gamma", "net.causal_transformer.layers.3.0.norm.beta", "net.causal_transformer.layers.3.0.to_out.1.gamma", "net.causal_transformer.layers.3.0.to_out.1.beta", "net.causal_transformer.layers.3.1.0.gamma", "net.causal_transformer.layers.3.1.0.beta", "net.causal_transformer.layers.3.1.3.gamma", "net.causal_transformer.layers.3.1.3.beta", "net.causal_transformer.layers.4.0.norm.gamma", "net.causal_transformer.layers.4.0.norm.beta", "net.causal_transformer.layers.4.0.to_out.1.gamma", "net.causal_transformer.layers.4.0.to_out.1.beta", "net.causal_transformer.layers.4.1.0.gamma", "net.causal_transformer.layers.4.1.0.beta", "net.causal_transformer.layers.4.1.3.gamma", "net.causal_transformer.layers.4.1.3.beta", "net.causal_transformer.layers.5.0.norm.gamma", "net.causal_transformer.layers.5.0.norm.beta", "net.causal_transformer.layers.5.0.to_out.1.gamma", "net.causal_transformer.layers.5.0.to_out.1.beta", "net.causal_transformer.layers.5.1.0.gamma", "net.causal_transformer.layers.5.1.0.beta", "net.causal_transformer.layers.5.1.3.gamma", "net.causal_transformer.layers.5.1.3.beta", "net.causal_transformer.layers.6.0.norm.gamma", "net.causal_transformer.layers.6.0.norm.beta", "net.causal_transformer.layers.6.0.to_out.1.gamma", "net.causal_transformer.layers.6.0.to_out.1.beta", "net.causal_transformer.layers.6.1.0.gamma", "net.causal_transformer.layers.6.1.0.beta", "net.causal_transformer.layers.6.1.3.gamma", "net.causal_transformer.layers.6.1.3.beta", "net.causal_transformer.layers.7.0.norm.gamma", "net.causal_transformer.layers.7.0.norm.beta", "net.causal_transformer.layers.7.0.to_out.1.gamma", "net.causal_transformer.layers.7.0.to_out.1.beta", "net.causal_transformer.layers.7.1.0.gamma", "net.causal_transformer.layers.7.1.0.beta", "net.causal_transformer.layers.7.1.3.gamma", "net.causal_transformer.layers.7.1.3.beta", "net.causal_transformer.layers.8.0.norm.gamma", "net.causal_transformer.layers.8.0.norm.beta", "net.causal_transformer.layers.8.0.to_out.1.gamma", "net.causal_transformer.layers.8.0.to_out.1.beta", "net.causal_transformer.layers.8.1.0.gamma", "net.causal_transformer.layers.8.1.0.beta", "net.causal_transformer.layers.8.1.3.gamma", "net.causal_transformer.layers.8.1.3.beta", "net.causal_transformer.layers.9.0.norm.gamma", "net.causal_transformer.layers.9.0.norm.beta", "net.causal_transformer.layers.9.0.to_out.1.gamma", "net.causal_transformer.layers.9.0.to_out.1.beta", "net.causal_transformer.layers.9.1.0.gamma", "net.causal_transformer.layers.9.1.0.beta", "net.causal_transformer.layers.9.1.3.gamma", "net.causal_transformer.layers.9.1.3.beta", "net.causal_transformer.layers.10.0.norm.gamma", "net.causal_transformer.layers.10.0.norm.beta", "net.causal_transformer.layers.10.0.to_out.1.gamma", "net.causal_transformer.layers.10.0.to_out.1.beta", "net.causal_transformer.layers.10.1.0.gamma", "net.causal_transformer.layers.10.1.0.beta", "net.causal_transformer.layers.10.1.3.gamma", "net.causal_transformer.layers.10.1.3.beta", "net.causal_transformer.layers.11.0.norm.gamma", "net.causal_transformer.layers.11.0.norm.beta", "net.causal_transformer.layers.11.0.to_out.1.gamma", "net.causal_transformer.layers.11.0.to_out.1.beta", "net.causal_transformer.layers.11.1.0.gamma", "net.causal_transformer.layers.11.1.0.beta", "net.causal_transformer.layers.11.1.3.gamma", "net.causal_transformer.layers.11.1.3.beta", "net.causal_transformer.norm.gamma", "net.causal_transformer.norm.beta". size mismatch for net.to_time_embeds.0.weight: copying a param with shape torch.Size([100, 512]) from checkpoint, the shape in current model is torch.Size([1000, 512]). size mismatch for net.causal_transformer.rel_pos_bias.relative_attention_bias.weight: copying a param with shape torch.Size([32, 16]) from checkpoint, the shape in current model is torch.Size([32, 8]). size mismatch for net.causal_transformer.layers.0.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.0.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.1.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.1.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.2.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.2.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.3.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.3.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.4.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.4.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.5.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.5.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.6.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.6.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.7.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.7.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.8.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.8.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.9.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.9.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.10.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.10.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.11.0.to_q.weight: copying a param with shape torch.Size([1024, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]). size mismatch for net.causal_transformer.layers.11.0.to_out.0.weight: copying a param with shape torch.Size([512, 1024]) from checkpoint, the shape in current model is torch.Size([512, 512]).

jiamingzhang94 avatar Jul 23 '24 01:07 jiamingzhang94