BS-RoFormer
BS-RoFormer copied to clipboard
Feature request: decouple the loss function of the forward function
In the current implementation, the forward()
method is generic for train or eval mode. In some case, we need to have not only the loss but the prediction on output that allow to compute extra features like the SDR metric during the validation step.
Because the loss function code is common for BSRoformer
and MelBandRoformer
classes, maybe that can be better create a new class like MultiResLoss
for a maximum of flexibility:
import torch
import torch.nn.functional as F
from einops import rearrange
from beartype import beartype
from beartype.typing import Tuple
class MultiResLoss():
@beartype
def __init__(
self,
num_stems,
stft_n_fft,
multi_stft_resolution_loss_weight = 1.,
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
multi_stft_hop_size = 147,
multi_stft_normalized = False
):
self.num_stems = num_stems
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
self.multi_stft_n_fft = stft_n_fft
self.multi_stft_kwargs = dict(
hop_length = multi_stft_hop_size,
normalized = multi_stft_normalized
)
def __call__(
self,
predict,
targets,
return_loss_breakdown = False
):
if self.num_stems > 1:
assert targets.ndim == 4 and targets.shape[1] == self.num_stems
if targets.ndim == 2:
targets = rearrange(targets, '... t -> ... 1 t')
targets = targets[..., :predict.shape[-1]] # protect against lost length on istft
loss = F.l1_loss(predict, targets)
multi_stft_resolution_loss = 0.
for window_size in self.multi_stft_resolutions_window_sizes:
res_stft_kwargs = dict(
n_fft = max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
win_length = window_size,
return_complex = True,
**self.multi_stft_kwargs,
)
predict_Y = torch.stft(rearrange(predict, '... s t -> (... s) t'), **res_stft_kwargs)
targets_Y = torch.stft(rearrange(targets, '... s t -> (... s) t'), **res_stft_kwargs)
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(predict_Y, targets_Y)
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
total_loss = loss + weighted_multi_resolution_loss
if not return_loss_breakdown:
return total_loss
return total_loss, (loss, multi_stft_resolution_loss)
In the same spirit, a little refactoring could be to create a new file for the common classes :
- RMSNorm
- FeedForward
- Attention
- Transformer
- BandSplit
- MLP
- MaskEstimator
That can be easier for future change in the code?
I agree that separating the loss would be useful, because sometimes you just want to apply forward to get the output
And also you have custom losses