kickscore
kickscore copied to clipboard
Pairwise comparisons with flexible time-dynamics.
kickscore
|build-status| |coverage|
kickscore
is the dynamic skill rating system powering Kickoff.ai <https://kickoff.ai/>
_.
In short, kickscore
can be used to understand & visualize the skill of
players (or teams) competing in pairwise matches, and to predict outcomes of
future matches. It extends the Elo rating system <https://en.wikipedia.org/wiki/Elo_rating_system>
_ and TrueSkill <https://en.wikipedia.org/wiki/TrueSkill>
_.
|nba-history|
Getting started
To install the latest release directly from PyPI, simply type::
pip install kickscore
To get started, you might want to explore one of these notebooks:
-
Basic example illustrating the API <examples/kickscore-basics.ipynb>
_ (interactive version <https://colab.research.google.com/github/lucasmaystre/kickscore/blob/master/examples/kickscore-basics.ipynb>
__) -
Visualizing the history of the NBA <examples/nba-history.ipynb>
_ (interactive version <https://colab.research.google.com/github/lucasmaystre/kickscore/blob/master/examples/nba-history.ipynb>
__)
References
- Lucas Maystre, Victor Kristof, Matthias Grossglauser,
Pairwise Comparisons with Flexible Time-Dynamics
_, KDD 2019
.. _Pairwise Comparisons with Flexible Time-Dynamics: https://arxiv.org/abs/1903.07746
.. |build-status| image:: https://travis-ci.org/lucasmaystre/kickscore.svg?branch=master :alt: build status :scale: 100% :target: https://travis-ci.org/lucasmaystre/kickscore
.. |coverage| image:: https://codecov.io/gh/lucasmaystre/kickscore/branch/master/graph/badge.svg :alt: code coverage :scale: 100% :target: https://codecov.io/gh/lucasmaystre/kickscore
.. |nba-history| image:: https://lum-public.s3-eu-west-1.amazonaws.com/kickscore-nba-history.svg :alt: evolution of NBA teams' skill over history :scale: 100%