DSTA-Net icon indicating copy to clipboard operation
DSTA-Net copied to clipboard

DSTA-Net

Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action-Gesture Recognition in ACCV2020

Result

A little different with paper due the reimplementation.

  • NTU-60-CS: ~91.8%
  • SHREC-14: ~97.2%

Data Preparation

  • SHREC
    • Download the SHREC data from http://www-rech.telecom-lille.fr/shrec2017-hand/
    • Generate the train/test splits with python prepare/shrec/gendata.py
  • DHG
    • Download the DHG data from the http://www-rech.telecom-lille.fr/DHGdataset/
    • Generate the train/test splits with python prepare/dhg/gendata.py
  • NTU-60
    • Download the NTU-60 data from the https://github.com/shahroudy/NTURGB-D
    • Generate the train/test splits with python prepare/ntu_60/gendata.py
  • NTU-120
    • Download the NTU-120 data from the https://github.com/shahroudy/NTURGB-D
    • Generate the train/test splits with python prepare/ntu_120/gendata.py
  • Note
    • You can check the raw/generated skeletons through the function view_raw/generated_skeletons_and_images() for NTU and function ske_vis() for dhg/shrec in gendata.py

Training & Testing

Change the config file depending on what you want.

`python train_val_test/train.py --config ./config/shrec/shrec_dstanet_14.yaml`

Train with decoupled modalities by changing the 'num_skip_frame'(None to 1 or 2) option and 'decouple_spatial'(False to True) option in config file and train again.

Then combine the generated scores with:

`python train_val_test/ensemble.py`

Citation

Please cite the following paper if you use this repository in your reseach.

@inproceedings{dstanet_accv2020,  
      title     = {Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action-Gesture Recognition},  
      author    = {Lei Shi and Yifan Zhang and Jian Cheng and Hanqing Lu},  
      booktitle = {ACCV},  
      year      = {2020},  
}

Contact

For any questions, feel free to contact: [email protected]