downhill
downhill copied to clipboard
Stochastic gradient routines for Theano
.. image:: https://travis-ci.org/lmjohns3/downhill.svg .. image:: https://coveralls.io/repos/lmjohns3/downhill/badge.svg :target: https://coveralls.io/r/lmjohns3/downhill .. image:: http://depsy.org/api/package/pypi/downhill/badge.svg :target: http://depsy.org/package/python/downhill
============
DOWNHILL
The downhill
package provides algorithms for minimizing scalar loss
functions that are defined using Theano_.
Several optimization algorithms are included:
- ADADELTA_
- ADAGRAD_
- Adam_
-
Equilibrated SGD
_ -
Nesterov's Accelerated Gradient
_ - RMSProp_
-
Resilient Backpropagation
_ -
Stochastic Gradient Descent
_
All algorithms permit the use of regular or Nesterov-style momentum as well.
.. _Theano: http://deeplearning.net/software/theano/
.. _Stochastic Gradient Descent: http://downhill.readthedocs.org/en/stable/generated/downhill.first_order.SGD.html .. _Nesterov's Accelerated Gradient: http://downhill.readthedocs.org/en/stable/generated/downhill.first_order.NAG.html .. _Resilient Backpropagation: http://downhill.readthedocs.org/en/stable/generated/downhill.adaptive.RProp.html .. _ADAGRAD: http://downhill.readthedocs.org/en/stable/generated/downhill.adaptive.ADAGRAD.html .. _RMSProp: http://downhill.readthedocs.org/en/stable/generated/downhill.adaptive.RMSProp.html .. _ADADELTA: http://downhill.readthedocs.org/en/stable/generated/downhill.adaptive.ADADELTA.html .. _Adam: http://downhill.readthedocs.org/en/stable/generated/downhill.adaptive.Adam.html .. _Equilibrated SGD: http://downhill.readthedocs.org/en/stable/generated/downhill.adaptive.ESGD.html
Quick Start: Matrix Factorization
Let's say you have 100 samples of 1000-dimensional data, and you want to represent your data as 100 coefficients in a 10-dimensional basis. This is pretty straightforward to model using Theano: you can use a matrix multiplication as the data model, a squared-error term for optimization, and a sparse regularizer to encourage small coefficient values.
Once you have constructed an expression for the loss, you can optimize it with a
single call to downhill.minimize
:
.. code:: python
import downhill import numpy as np import theano import theano.tensor as TT
FLOAT = 'df'[theano.config.floatX == 'float32']
def rand(a, b): return np.random.randn(a, b).astype(FLOAT)
A, B, K = 20, 5, 3
Set up a matrix factorization problem to optimize.
u = theano.shared(rand(A, K), name='u') v = theano.shared(rand(K, B), name='v') z = TT.matrix() err = TT.sqr(z - TT.dot(u, v)) loss = err.mean() + abs(u).mean() + (v * v).mean()
Minimize the regularized loss with respect to a data matrix.
y = np.dot(rand(A, K), rand(K, B)) + rand(A, B)
Monitor during optimization.
monitors = (('err', err.mean()), ('|u|<0.1', (abs(u) < 0.1).mean()), ('|v|<0.1', (abs(v) < 0.1).mean()))
downhill.minimize( loss=loss, train=[y], patience=0, batch_size=A, # Process y as a single batch. max_gradient_norm=1, # Prevent gradient explosion! learning_rate=0.1, monitors=monitors, monitor_gradients=True)
Print out the optimized coefficients u and basis v.
print('u =', u.get_value()) print('v =', v.get_value())
If you prefer to maintain more control over your model during optimization, downhill provides an iterative optimization interface:
.. code:: python
opt = downhill.build(algo='rmsprop', loss=loss, monitors=monitors, monitor_gradients=True)
for metrics, _ in opt.iterate(train=[[y]], patience=0, batch_size=A, max_gradient_norm=1, learning_rate=0.1): print(metrics)
If that's still not enough, you can just plain ask downhill for the updates to your model variables and do everything else yourself:
.. code:: python
updates = downhill.build('rmsprop', loss).get_updates( batch_size=A, max_gradient_norm=1, learning_rate=0.1) func = theano.function([z], loss, updates=list(updates)) for _ in range(100): print(func(y)) # Evaluate func and apply variable updates.
More Information
Source: http://github.com/lmjohns3/downhill
Documentation: http://downhill.readthedocs.org
Mailing list: https://groups.google.com/forum/#!forum/downhill-users