[mlir] Convert `expand_shape` to more static form
Add pattern that converts a tensor.expand_shape op to a more static form.
This matches the pattern: tensor.cast -> tensor.expand_shape if it has a foldable tensor.cast and some constant foldable output_shape operands for the tensor.expand_shape. This makes the tensor.expand_shape more static, as well as allowing the static information to be propagated further down in the program.
My main concern here is that the generated casts are not guaranteed to fold with other casts.
There is ChainedTensorCast pattern, which folds the tensor.cast ops into a single tensor.cast op. Then you can follow what Mahesh suggested, which folds the producer tensor.cast into the expand_shape op. There is a canFoldIntoProducerOp, which can be used in the expand_shape -> tensor.cast folding. I'm not pretty sure if they work or not, please take a look at these two functions.
@llvm/pr-subscribers-mlir
@llvm/pr-subscribers-mlir-tensor
Author: Ian Wood (IanWood1)
Changes
Initially, my idea was to sink tensor.cast op through tensor.expand_shape ops when it makes the expand op more static. But then I realized that the SSA output_shape operands are capturing shape info that can't be propagated. From the commit's description:
>When output_sizes can be determined, convert to a static expand_shape op and insert cast ops. The top cast will be (dynamic -> static) allowing it to be propagated upwards and the bottom will be (static -> dynamic) allowing it to propagate down (or cancel with adjacent tensor.cast ops).
My main concern here is that the generated casts are not guaranteed to fold with other casts. This is somewhat similar to what linalg does where it introduces casts before operands when their shapes are inferred. But, I'm not sure if this is suited for a canonicalization pattern (I could just add a check to make sure the pattern would fold >1 adjacent cast).
Also, the opposite might happen as well. Where output_sizes are unknown constants but there is a tensor.cast consumer that has the output size information.
Sidenote: I disabled CI because drop-unit-extent-dims.mlir will fail. There is a cast that gets converted to a static form. Just wanted to wait for review to determine if a fix is needed.
Full diff: https://github.com/llvm/llvm-project/pull/112265.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Tensor/IR/TensorOps.cpp (+79-1)
- (modified) mlir/test/Dialect/Tensor/canonicalize.mlir (+54)
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index 4d6c5965c4fcc3..ee0e8c2d201226 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -24,6 +24,7 @@
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
+#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
@@ -1982,6 +1983,83 @@ struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> {
return success();
}
};
+
+struct ConvertToStaticExpandShape : public OpRewritePattern<ExpandShapeOp> {
+ using OpRewritePattern<ExpandShapeOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(ExpandShapeOp expandOp,
+ PatternRewriter &rewriter) const override {
+ auto castOp = expandOp.getSrc().getDefiningOp<CastOp>();
+ if (!canFoldIntoConsumerOp(castOp))
+ return failure();
+
+ const ArrayRef<int64_t> castSrcShape =
+ castOp.getSource().getType().getShape();
+ const SmallVector<ReassociationIndices, 4> reassoc =
+ expandOp.getReassociationIndices();
+
+ SmallVector<int64_t> newOutputShape(expandOp.getResultType().getShape());
+ SmallVector<Value> dynamicOutputShape;
+ auto outputIt = expandOp.getOutputShape().begin();
+
+ for (const auto &[inputDim, innerReassoc] : llvm::enumerate(reassoc)) {
+ for (const uint64_t outDim : innerReassoc) {
+ if (!ShapedType::isDynamic(newOutputShape[outDim]))
+ continue;
+
+ // If the cast's src type is dynamic, don't infer any of the
+ // corresponding expanded dimensions. `tensor.expand_shape` requires at
+ // least one of the expanded dimensions to be dynamic if the input is
+ // dynamic.
+ Value val = *outputIt;
+ ++outputIt;
+ if (ShapedType::isDynamic(castSrcShape[inputDim])) {
+ dynamicOutputShape.push_back(val);
+ continue;
+ }
+
+ APInt cst;
+ if (matchPattern(val, m_ConstantInt(&cst))) {
+ newOutputShape[outDim] = cst.getSExtValue();
+ } else {
+ dynamicOutputShape.push_back(val);
+ }
+ }
+ }
+
+ // Couldn't match any values, nothing to change
+ if (expandOp.getOutputShape().size() == dynamicOutputShape.size())
+ return failure();
+
+ // Calculate the input shape from the output
+ SmallVector<int64_t> newInputShape(expandOp.getSrcType().getRank(), 1l);
+ for (uint64_t inDim = 0; inDim < newInputShape.size(); inDim++) {
+ for (auto outDim : reassoc[inDim]) {
+ auto ofr = newOutputShape[outDim];
+ if (ShapedType::isDynamic(ofr)) {
+ newInputShape[inDim] = ShapedType::kDynamic;
+ break;
+ }
+ newInputShape[inDim] *= ofr;
+ }
+ }
+
+ SmallVector<OpFoldResult> outputOfr =
+ getMixedValues(newOutputShape, dynamicOutputShape, rewriter);
+ auto inputType = RankedTensorType::get(
+ newInputShape, expandOp.getSrcType().getElementType());
+ auto outputType = RankedTensorType::get(
+ newOutputShape, expandOp.getSrcType().getElementType());
+ auto inputCast = rewriter.create<CastOp>(expandOp.getLoc(), inputType,
+ expandOp.getSrc());
+ auto newExpand = rewriter.create<ExpandShapeOp>(
+ expandOp.getLoc(), outputType, inputCast.getResult(),
+ expandOp.getReassociationIndices(), outputOfr);
+ rewriter.replaceOpWithNewOp<CastOp>(expandOp, expandOp.getType(),
+ newExpand.getResult());
+ return success();
+ }
+};
} // namespace
void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
@@ -1989,7 +2067,7 @@ void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
results.add<
ComposeReassociativeReshapeOps<ExpandShapeOp, ReshapeOpKind::kExpand>,
ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
- FoldReshapeWithConstant<ExpandShapeOp>,
+ ConvertToStaticExpandShape, FoldReshapeWithConstant<ExpandShapeOp>,
FoldReshapeWithSplat<ExpandShapeOp>,
FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
FoldDimOfCollapseShape>(context);
diff --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index 0aa2d33ef17ed4..63f394a14d3899 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -2718,3 +2718,57 @@ func.func @pack_dont_drop_attributes(%arg0: tensor<?x?x?xf16>, %arg1: tensor<128
%pack = tensor.pack %arg0 padding_value(%cst : f16) outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [16, 1] into %arg1 {test_attr} : tensor<?x?x?xf16> -> tensor<128x?x100x16x1xf16>
return %pack : tensor<128x?x100x16x1xf16>
}
+
+// -----
+
+func.func @fold_expand_of_cast(%arg0 : tensor<10x10xf32>)
+ -> tensor<10x1x10xf32> {
+ %c1 = arith.constant 1 : index
+ %c10 = arith.constant 10 : index
+ %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
+ %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10]
+ : tensor<?x?xf32> into tensor<?x?x?xf32>
+ %2 = tensor.cast %1 : tensor<?x?x?xf32> to tensor<10x1x10xf32>
+ return %2 : tensor<10x1x10xf32>
+}
+// CHECK-LABEL: func.func @fold_expand_of_cast
+// CHECK: %[[RES:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]] output_shape [10, 1, 10]
+// CHECK: return %[[RES]]
+
+// -----
+
+func.func @sink_expand_of_cast(%arg0 : tensor<?x10xf32>)
+ -> tensor<?x?x?xf32> {
+ %c1 = arith.constant 1 : index
+ %c10 = arith.constant 10 : index
+ %0 = tensor.cast %arg0 : tensor<?x10xf32> to tensor<?x?xf32>
+ %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%c10, %c1, %c10]
+ : tensor<?x?xf32> into tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func.func @sink_expand_of_cast
+// CHECK-DAG: %[[C10:.*]] = arith.constant 10
+// CHECK-DAG: %[[C1:.*]] = arith.constant 1
+// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]]
+// CHECK-SAME: output_shape [%[[C10]], %[[C1]], 10]
+// CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]]
+// CHECK: return %[[RES]]
+
+// -----
+
+func.func @partial_sink_expand_of_cast(%arg0 : tensor<10x10xf32>, %arg1 : index, %arg2 : index)
+ -> tensor<?x?x?xf32> {
+ %c10 = arith.constant 10 : index
+ %0 = tensor.cast %arg0 : tensor<10x10xf32> to tensor<?x?xf32>
+ %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %c10]
+ : tensor<?x?xf32> into tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: func.func @partial_sink_expand_of_cast
+// CHECK: %[[CAST:.+]] = tensor.cast
+// CHECK-SAME: tensor<10x10xf32> to tensor<?x10xf32>
+// CHECK: %[[EXPAND:.+]] = tensor.expand_shape %{{.*}} {{\[}}[0, 1], [2]]
+// CHECK-SAME: output_shape [%{{.*}}, %{{.*}}, 10]
+// CHECK: %[[RES:.+]] = tensor.cast %[[EXPAND]]
+// CHECK-SAME: tensor<?x?x10xf32> to tensor<?x?x?xf32>
+// CHECK: return %[[RES]]
Nit: please cleanup the description to only describe the commit before landing the PR.