stable-diffusion-webui-forge icon indicating copy to clipboard operation
stable-diffusion-webui-forge copied to clipboard

Assertion error

Open louitlehk opened this issue 7 months ago • 0 comments

Got this error while using SDXL Model (Illustious) I have NVIDIA RTX 3050 Laptop GPU 4 GB VRAM and 16 GB of RAM Traceback (most recent call last): File "D:\webui\webui\modules_forge\main_thread.py", line 37, in loop task.work() File "D:\webui\webui\modules_forge\main_thread.py", line 26, in work self.result = self.func(*self.args, **self.kwargs) File "D:\webui\webui\modules\txt2img.py", line 110, in txt2img_function processed = processing.process_images(p) File "D:\webui\webui\modules\processing.py", line 797, in process_images res = process_images_inner(p) File "D:\webui\webui\modules\processing.py", line 940, in process_images_inner samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) File "D:\webui\webui\modules\processing.py", line 1311, in sample samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) File "D:\webui\webui\modules\sd_samplers_kdiffusion.py", line 234, in sample samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "D:\webui\webui\modules\sd_samplers_common.py", line 271, in launch_sampling return func() File "D:\webui\webui\modules\sd_samplers_kdiffusion.py", line 234, in samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "D:\webui\system\python\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "D:\webui\webui\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m denoised = model(x, sigmas[i] * s_in, **extra_args) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self.call_impl(*args, **kwargs) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1541, in call_impl return forward_call(*args, **kwargs) File "D:\webui\webui\modules\sd_samplers_cfg_denoiser.py", line 185, in forward denoised, cond_pred, uncond_pred = sampling_function(self, denoiser_params=denoiser_params, cond_scale=cond_scale, cond_composition=cond_composition) File "D:\webui\webui\backend\sampling\sampling_function.py", line 339, in sampling_function denoised, cond_pred, uncond_pred = sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options, seed, return_full=True) File "D:\webui\webui\backend\sampling\sampling_function.py", line 284, in sampling_function_inner cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options) File "D:\webui\webui\backend\sampling\sampling_function.py", line 254, in calc_cond_uncond_batch output = model.apply_model(input_x, timestep, **c).chunk(batch_chunks) File "D:\webui\webui\backend\modules\k_model.py", line 43, in apply_model model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1541, in _call_impl return forward_call(*args, **kwargs) File "D:\webui\webui\backend\nn\unet.py", line 713, in forward h = module(h, emb, context, transformer_options) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1541, in _call_impl return forward_call(*args, **kwargs) File "D:\webui\webui\backend\nn\unet.py", line 83, in forward x = layer(x, context, transformer_options) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1541, in _call_impl return forward_call(*args, **kwargs) File "D:\webui\webui\backend\nn\unet.py", line 318, in forward x = self.proj_in(x) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\webui\system\python\lib\site-packages\torch\nn\modules\module.py", line 1541, in _call_impl return forward_call(*args, **kwargs) File "D:\webui\webui\backend\operations.py", line 314, in forward return functional_linear_4bits(x, self.weight, self.bias) File "D:\webui\webui\backend\operations_bnb.py", line 10, in functional_linear_4bits out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state) File "D:\webui\system\python\lib\site-packages\bitsandbytes\autograd_functions.py", line 566, in matmul_4bit assert quant_state is not None AssertionError

louitlehk avatar May 01 '25 13:05 louitlehk