[BUG] Black image. (FLUX)
Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]
Version: f2.0.1v1.10.1-previous-297-g5fb67f49
Commit hash: 5fb67f49e8552c1e4e40feafd92cad9aca5c92c2
Launching Web UI with arguments: --forge-ref-a1111-home C:/Users/ZeroCool22/Desktop/AutoSDXL/stable-diffusion-webui/ --ckpt-dir F:/Stable-diffusion/ --vae-dir 'C:\Users\ZeroCool22\Desktop\AutoSDXL\stable-diffusion-webui\models\VAE' --hypernetwork-dir /models/hypernetworks --embeddings-dir /embeddings --lora-dir C:/Users/ZeroCool22/Desktop/AutoSDXL/stable-diffusion-webui/models/Lora --controlnet-dir 'C:\Users\ZeroCool22\Desktop\AutoSDXL\stable-diffusion-webui\models\ControlNet' --controlnet-preprocessor-models-dir 'C:\Users\ZeroCool22\Desktop\AutoSDXL\stable-diffusion-webui\extensions\sd-webui-controlnet\annotator\downloads'
Total VRAM 11264 MB, total RAM 32680 MB
pytorch version: 2.3.1+cu121
Set vram state to: NORMAL_VRAM
Device: cuda:0 NVIDIA GeForce GTX 1080 Ti : native
VAE dtype preferences: [torch.float32] -> torch.float32
CUDA Using Stream: False
C:\Users\ZeroCool22\Desktop\webui_forge\system\python\lib\site-packages\transformers\utils\hub.py:127: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.
warnings.warn(
Using pytorch cross attention
Using pytorch attention for VAE
ControlNet preprocessor location: C:\Users\ZeroCool22\Desktop\AutoSDXL\stable-diffusion-webui\extensions\sd-webui-controlnet\annotator\downloads
2024-08-15 13:20:20,828 - ControlNet - INFO - ControlNet UI callback registered.
Model selected: {'checkpoint_info': {'filename': 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\Stable-diffusion\\realisticVisionV51_v51VAE.safetensors', 'hash': 'a0f13c83'}, 'additional_modules': [], 'unet_storage_dtype': None}
Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`.
Startup time: 18.0s (prepare environment: 3.2s, launcher: 2.4s, import torch: 5.2s, initialize shared: 0.2s, other imports: 1.3s, list SD models: 0.6s, load scripts: 1.8s, create ui: 2.0s, gradio launch: 1.3s).
Environment vars changed: {'stream': False, 'inference_memory': 1024.0, 'pin_shared_memory': False}
Model selected: {'checkpoint_info': {'filename': 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\Stable-diffusion\\realisticVisionV51_v51VAE.safetensors', 'hash': 'a0f13c83'}, 'additional_modules': ['C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\t5xxl_fp8_e4m3fn.safetensors'], 'unet_storage_dtype': None}
Model selected: {'checkpoint_info': {'filename': 'F:\\Stable-diffusion\\FLUX\\flux1-dev-Q4_0.gguf', 'hash': '3f6d9145'}, 'additional_modules': ['C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\t5xxl_fp8_e4m3fn.safetensors'], 'unet_storage_dtype': None}
Loading Model: {'checkpoint_info': {'filename': 'F:\\Stable-diffusion\\FLUX\\flux1-dev-Q4_0.gguf', 'hash': '3f6d9145'}, 'additional_modules': ['C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\t5xxl_fp8_e4m3fn.safetensors'], 'unet_storage_dtype': None}
StateDict Keys: {'transformer': 780, 'vae': 0, 'text_encoder_2': 220, 'ignore': 0}
Traceback (most recent call last):
File "C:\Users\ZeroCool22\Desktop\webui_forge\webui\modules_forge\main_thread.py", line 30, in work
self.result = self.func(*self.args, **self.kwargs)
File "C:\Users\ZeroCool22\Desktop\webui_forge\webui\modules\txt2img.py", line 110, in txt2img_function
processed = processing.process_images(p)
File "C:\Users\ZeroCool22\Desktop\webui_forge\webui\modules\processing.py", line 789, in process_images
p.sd_model, just_reloaded = forge_model_reload()
File "C:\Users\ZeroCool22\Desktop\webui_forge\system\python\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\ZeroCool22\Desktop\webui_forge\webui\modules\sd_models.py", line 501, in forge_model_reload
sd_model = forge_loader(state_dict, additional_state_dicts=additional_state_dicts)
File "C:\Users\ZeroCool22\Desktop\webui_forge\system\python\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\ZeroCool22\Desktop\webui_forge\webui\backend\loader.py", line 261, in forge_loader
component = load_huggingface_component(estimated_config, component_name, lib_name, cls_name, local_path, component_sd)
File "C:\Users\ZeroCool22\Desktop\webui_forge\webui\backend\loader.py", line 59, in load_huggingface_component
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have CLIP state dict!'
AssertionError: You do not have CLIP state dict!
You do not have CLIP state dict!
Model selected: {'checkpoint_info': {'filename': 'F:\\Stable-diffusion\\FLUX\\flux1-dev-Q4_0.gguf', 'hash': '3f6d9145'}, 'additional_modules': ['C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\t5xxl_fp8_e4m3fn.safetensors', 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\clip_l.safetensors'], 'unet_storage_dtype': None}
Model selected: {'checkpoint_info': {'filename': 'F:\\Stable-diffusion\\FLUX\\flux1-dev-Q4_0.gguf', 'hash': '3f6d9145'}, 'additional_modules': ['C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\t5xxl_fp8_e4m3fn.safetensors', 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\clip_l.safetensors', 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\VAE\\diffusion_pytorch_model.safetensors'], 'unet_storage_dtype': None}
Loading Model: {'checkpoint_info': {'filename': 'F:\\Stable-diffusion\\FLUX\\flux1-dev-Q4_0.gguf', 'hash': '3f6d9145'}, 'additional_modules': ['C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\t5xxl_fp8_e4m3fn.safetensors', 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\text_encoder\\clip_l.safetensors', 'C:\\Users\\ZeroCool22\\Desktop\\webui_forge\\webui\\models\\VAE\\diffusion_pytorch_model.safetensors'], 'unet_storage_dtype': None}
StateDict Keys: {'transformer': 780, 'vae': 244, 'text_encoder': 196, 'text_encoder_2': 220, 'ignore': 0}
Using Detected T5 Data Type: torch.float8_e4m3fn
Using Detected UNet Type: gguf
Using pre-quant state dict!
Using GGUF state dict: {'F16': 476, 'Q4_0': 304}
Working with z of shape (1, 16, 32, 32) = 16384 dimensions.
IntegratedAutoencoderKL Missing: ['encoder.down.0.block.0.norm1.weight', 'encoder.down.0.block.0.norm1.bias', 'encoder.down.0.block.0.conv1.weight', 'encoder.down.0.block.0.conv1.bias', 'encoder.down.0.block.0.norm2.weight', 'encoder.down.0.block.0.norm2.bias', 'encoder.down.0.block.0.conv2.weight', 'encoder.down.0.block.0.conv2.bias', 'encoder.down.0.block.1.norm1.weight', 'encoder.down.0.block.1.norm1.bias', 'encoder.down.0.block.1.conv1.weight', 'encoder.down.0.block.1.conv1.bias', 'encoder.down.0.block.1.norm2.weight', 'encoder.down.0.block.1.norm2.bias', 'encoder.down.0.block.1.conv2.weight', 'encoder.down.0.block.1.conv2.bias', 'encoder.down.0.downsample.conv.weight', 'encoder.down.0.downsample.conv.bias', 'encoder.down.1.block.0.norm1.weight', 'encoder.down.1.block.0.norm1.bias', 'encoder.down.1.block.0.conv1.weight', 'encoder.down.1.block.0.conv1.bias', 'encoder.down.1.block.0.norm2.weight', 'encoder.down.1.block.0.norm2.bias', 'encoder.down.1.block.0.conv2.weight', 'encoder.down.1.block.0.conv2.bias', 'encoder.down.1.block.0.nin_shortcut.weight', 'encoder.down.1.block.0.nin_shortcut.bias', 'encoder.down.1.block.1.norm1.weight', 'encoder.down.1.block.1.norm1.bias', 'encoder.down.1.block.1.conv1.weight', 'encoder.down.1.block.1.conv1.bias', 'encoder.down.1.block.1.norm2.weight', 'encoder.down.1.block.1.norm2.bias', 'encoder.down.1.block.1.conv2.weight', 'encoder.down.1.block.1.conv2.bias', 'encoder.down.1.downsample.conv.weight', 'encoder.down.1.downsample.conv.bias', 'encoder.down.2.block.0.norm1.weight', 'encoder.down.2.block.0.norm1.bias', 'encoder.down.2.block.0.conv1.weight', 'encoder.down.2.block.0.conv1.bias', 'encoder.down.2.block.0.norm2.weight', 'encoder.down.2.block.0.norm2.bias', 'encoder.down.2.block.0.conv2.weight', 'encoder.down.2.block.0.conv2.bias', 'encoder.down.2.block.0.nin_shortcut.weight', 'encoder.down.2.block.0.nin_shortcut.bias', 'encoder.down.2.block.1.norm1.weight', 'encoder.down.2.block.1.norm1.bias', 'encoder.down.2.block.1.conv1.weight', 'encoder.down.2.block.1.conv1.bias', 'encoder.down.2.block.1.norm2.weight', 'encoder.down.2.block.1.norm2.bias', 'encoder.down.2.block.1.conv2.weight', 'encoder.down.2.block.1.conv2.bias', 'encoder.down.2.downsample.conv.weight', 'encoder.down.2.downsample.conv.bias', 'encoder.down.3.block.0.norm1.weight', 'encoder.down.3.block.0.norm1.bias', 'encoder.down.3.block.0.conv1.weight', 'encoder.down.3.block.0.conv1.bias', 'encoder.down.3.block.0.norm2.weight', 'encoder.down.3.block.0.norm2.bias', 'encoder.down.3.block.0.conv2.weight', 'encoder.down.3.block.0.conv2.bias', 'encoder.down.3.block.1.norm1.weight', 'encoder.down.3.block.1.norm1.bias', 'encoder.down.3.block.1.conv1.weight', 'encoder.down.3.block.1.conv1.bias', 'encoder.down.3.block.1.norm2.weight', 'encoder.down.3.block.1.norm2.bias', 'encoder.down.3.block.1.conv2.weight', 'encoder.down.3.block.1.conv2.bias', 'encoder.mid.block_1.norm1.weight', 'encoder.mid.block_1.norm1.bias', 'encoder.mid.block_1.conv1.weight', 'encoder.mid.block_1.conv1.bias', 'encoder.mid.block_1.norm2.weight', 'encoder.mid.block_1.norm2.bias', 'encoder.mid.block_1.conv2.weight', 'encoder.mid.block_1.conv2.bias', 'encoder.mid.attn_1.norm.weight', 'encoder.mid.attn_1.norm.bias', 'encoder.mid.attn_1.q.weight', 'encoder.mid.attn_1.q.bias', 'encoder.mid.attn_1.k.weight', 'encoder.mid.attn_1.k.bias', 'encoder.mid.attn_1.v.weight', 'encoder.mid.attn_1.v.bias', 'encoder.mid.attn_1.proj_out.weight', 'encoder.mid.attn_1.proj_out.bias', 'encoder.mid.block_2.norm1.weight', 'encoder.mid.block_2.norm1.bias', 'encoder.mid.block_2.conv1.weight', 'encoder.mid.block_2.conv1.bias', 'encoder.mid.block_2.norm2.weight', 'encoder.mid.block_2.norm2.bias', 'encoder.mid.block_2.conv2.weight', 'encoder.mid.block_2.conv2.bias', 'encoder.norm_out.weight', 'encoder.norm_out.bias', 'decoder.mid.block_1.norm1.weight', 'decoder.mid.block_1.norm1.bias', 'decoder.mid.block_1.conv1.weight', 'decoder.mid.block_1.conv1.bias', 'decoder.mid.block_1.norm2.weight', 'decoder.mid.block_1.norm2.bias', 'decoder.mid.block_1.conv2.weight', 'decoder.mid.block_1.conv2.bias', 'decoder.mid.attn_1.norm.weight', 'decoder.mid.attn_1.norm.bias', 'decoder.mid.attn_1.q.weight', 'decoder.mid.attn_1.q.bias', 'decoder.mid.attn_1.k.weight', 'decoder.mid.attn_1.k.bias', 'decoder.mid.attn_1.v.weight', 'decoder.mid.attn_1.v.bias', 'decoder.mid.attn_1.proj_out.weight', 'decoder.mid.attn_1.proj_out.bias', 'decoder.mid.block_2.norm1.weight', 'decoder.mid.block_2.norm1.bias', 'decoder.mid.block_2.conv1.weight', 'decoder.mid.block_2.conv1.bias', 'decoder.mid.block_2.norm2.weight', 'decoder.mid.block_2.norm2.bias', 'decoder.mid.block_2.conv2.weight', 'decoder.mid.block_2.conv2.bias', 'decoder.up.0.block.0.norm1.weight', 'decoder.up.0.block.0.norm1.bias', 'decoder.up.0.block.0.conv1.weight', 'decoder.up.0.block.0.conv1.bias', 'decoder.up.0.block.0.norm2.weight', 'decoder.up.0.block.0.norm2.bias', 'decoder.up.0.block.0.conv2.weight', 'decoder.up.0.block.0.conv2.bias', 'decoder.up.0.block.0.nin_shortcut.weight', 'decoder.up.0.block.0.nin_shortcut.bias', 'decoder.up.0.block.1.norm1.weight', 'decoder.up.0.block.1.norm1.bias', 'decoder.up.0.block.1.conv1.weight', 'decoder.up.0.block.1.conv1.bias', 'decoder.up.0.block.1.norm2.weight', 'decoder.up.0.block.1.norm2.bias', 'decoder.up.0.block.1.conv2.weight', 'decoder.up.0.block.1.conv2.bias', 'decoder.up.0.block.2.norm1.weight', 'decoder.up.0.block.2.norm1.bias', 'decoder.up.0.block.2.conv1.weight', 'decoder.up.0.block.2.conv1.bias', 'decoder.up.0.block.2.norm2.weight', 'decoder.up.0.block.2.norm2.bias', 'decoder.up.0.block.2.conv2.weight', 'decoder.up.0.block.2.conv2.bias', 'decoder.up.1.block.0.norm1.weight', 'decoder.up.1.block.0.norm1.bias', 'decoder.up.1.block.0.conv1.weight', 'decoder.up.1.block.0.conv1.bias', 'decoder.up.1.block.0.norm2.weight', 'decoder.up.1.block.0.norm2.bias', 'decoder.up.1.block.0.conv2.weight', 'decoder.up.1.block.0.conv2.bias', 'decoder.up.1.block.0.nin_shortcut.weight', 'decoder.up.1.block.0.nin_shortcut.bias', 'decoder.up.1.block.1.norm1.weight', 'decoder.up.1.block.1.norm1.bias', 'decoder.up.1.block.1.conv1.weight', 'decoder.up.1.block.1.conv1.bias', 'decoder.up.1.block.1.norm2.weight', 'decoder.up.1.block.1.norm2.bias', 'decoder.up.1.block.1.conv2.weight', 'decoder.up.1.block.1.conv2.bias', 'decoder.up.1.block.2.norm1.weight', 'decoder.up.1.block.2.norm1.bias', 'decoder.up.1.block.2.conv1.weight', 'decoder.up.1.block.2.conv1.bias', 'decoder.up.1.block.2.norm2.weight', 'decoder.up.1.block.2.norm2.bias', 'decoder.up.1.block.2.conv2.weight', 'decoder.up.1.block.2.conv2.bias', 'decoder.up.1.upsample.conv.weight', 'decoder.up.1.upsample.conv.bias', 'decoder.up.2.block.0.norm1.weight', 'decoder.up.2.block.0.norm1.bias', 'decoder.up.2.block.0.conv1.weight', 'decoder.up.2.block.0.conv1.bias', 'decoder.up.2.block.0.norm2.weight', 'decoder.up.2.block.0.norm2.bias', 'decoder.up.2.block.0.conv2.weight', 'decoder.up.2.block.0.conv2.bias', 'decoder.up.2.block.1.norm1.weight', 'decoder.up.2.block.1.norm1.bias', 'decoder.up.2.block.1.conv1.weight', 'decoder.up.2.block.1.conv1.bias', 'decoder.up.2.block.1.norm2.weight', 'decoder.up.2.block.1.norm2.bias', 'decoder.up.2.block.1.conv2.weight', 'decoder.up.2.block.1.conv2.bias', 'decoder.up.2.block.2.norm1.weight', 'decoder.up.2.block.2.norm1.bias', 'decoder.up.2.block.2.conv1.weight', 'decoder.up.2.block.2.conv1.bias', 'decoder.up.2.block.2.norm2.weight', 'decoder.up.2.block.2.norm2.bias', 'decoder.up.2.block.2.conv2.weight', 'decoder.up.2.block.2.conv2.bias', 'decoder.up.2.upsample.conv.weight', 'decoder.up.2.upsample.conv.bias', 'decoder.up.3.block.0.norm1.weight', 'decoder.up.3.block.0.norm1.bias', 'decoder.up.3.block.0.conv1.weight', 'decoder.up.3.block.0.conv1.bias', 'decoder.up.3.block.0.norm2.weight', 'decoder.up.3.block.0.norm2.bias', 'decoder.up.3.block.0.conv2.weight', 'decoder.up.3.block.0.conv2.bias', 'decoder.up.3.block.1.norm1.weight', 'decoder.up.3.block.1.norm1.bias', 'decoder.up.3.block.1.conv1.weight', 'decoder.up.3.block.1.conv1.bias', 'decoder.up.3.block.1.norm2.weight', 'decoder.up.3.block.1.norm2.bias', 'decoder.up.3.block.1.conv2.weight', 'decoder.up.3.block.1.conv2.bias', 'decoder.up.3.block.2.norm1.weight', 'decoder.up.3.block.2.norm1.bias', 'decoder.up.3.block.2.conv1.weight', 'decoder.up.3.block.2.conv1.bias', 'decoder.up.3.block.2.norm2.weight', 'decoder.up.3.block.2.norm2.bias', 'decoder.up.3.block.2.conv2.weight', 'decoder.up.3.block.2.conv2.bias', 'decoder.up.3.upsample.conv.weight', 'decoder.up.3.upsample.conv.bias', 'decoder.norm_out.weight', 'decoder.norm_out.bias']
IntegratedAutoencoderKL Unexpected: ['encoder.conv_norm_out.bias', 'encoder.conv_norm_out.weight', 'encoder.down_blocks.0.downsamplers.0.conv.bias', 'encoder.down_blocks.0.downsamplers.0.conv.weight', 'encoder.down_blocks.0.resnets.0.conv1.bias', 'encoder.down_blocks.0.resnets.0.conv1.weight', 'encoder.down_blocks.0.resnets.0.conv2.bias', 'encoder.down_blocks.0.resnets.0.conv2.weight', 'encoder.down_blocks.0.resnets.0.norm1.bias', 'encoder.down_blocks.0.resnets.0.norm1.weight', 'encoder.down_blocks.0.resnets.0.norm2.bias', 'encoder.down_blocks.0.resnets.0.norm2.weight', 'encoder.down_blocks.0.resnets.1.conv1.bias', 'encoder.down_blocks.0.resnets.1.conv1.weight', 'encoder.down_blocks.0.resnets.1.conv2.bias', 'encoder.down_blocks.0.resnets.1.conv2.weight', 'encoder.down_blocks.0.resnets.1.norm1.bias', 'encoder.down_blocks.0.resnets.1.norm1.weight', 'encoder.down_blocks.0.resnets.1.norm2.bias', 'encoder.down_blocks.0.resnets.1.norm2.weight', 'encoder.down_blocks.1.downsamplers.0.conv.bias', 'encoder.down_blocks.1.downsamplers.0.conv.weight', 'encoder.down_blocks.1.resnets.0.conv1.bias', 'encoder.down_blocks.1.resnets.0.conv1.weight', 'encoder.down_blocks.1.resnets.0.conv2.bias', 'encoder.down_blocks.1.resnets.0.conv2.weight', 'encoder.down_blocks.1.resnets.0.conv_shortcut.bias', 'encoder.down_blocks.1.resnets.0.conv_shortcut.weight', 'encoder.down_blocks.1.resnets.0.norm1.bias', 'encoder.down_blocks.1.resnets.0.norm1.weight', 'encoder.down_blocks.1.resnets.0.norm2.bias', 'encoder.down_blocks.1.resnets.0.norm2.weight', 'encoder.down_blocks.1.resnets.1.conv1.bias', 'encoder.down_blocks.1.resnets.1.conv1.weight', 'encoder.down_blocks.1.resnets.1.conv2.bias', 'encoder.down_blocks.1.resnets.1.conv2.weight', 'encoder.down_blocks.1.resnets.1.norm1.bias', 'encoder.down_blocks.1.resnets.1.norm1.weight', 'encoder.down_blocks.1.resnets.1.norm2.bias', 'encoder.down_blocks.1.resnets.1.norm2.weight', 'encoder.down_blocks.2.downsamplers.0.conv.bias', 'encoder.down_blocks.2.downsamplers.0.conv.weight', 'encoder.down_blocks.2.resnets.0.conv1.bias', 'encoder.down_blocks.2.resnets.0.conv1.weight', 'encoder.down_blocks.2.resnets.0.conv2.bias', 'encoder.down_blocks.2.resnets.0.conv2.weight', 'encoder.down_blocks.2.resnets.0.conv_shortcut.bias', 'encoder.down_blocks.2.resnets.0.conv_shortcut.weight', 'encoder.down_blocks.2.resnets.0.norm1.bias', 'encoder.down_blocks.2.resnets.0.norm1.weight', 'encoder.down_blocks.2.resnets.0.norm2.bias', 'encoder.down_blocks.2.resnets.0.norm2.weight', 'encoder.down_blocks.2.resnets.1.conv1.bias', 'encoder.down_blocks.2.resnets.1.conv1.weight', 'encoder.down_blocks.2.resnets.1.conv2.bias', 'encoder.down_blocks.2.resnets.1.conv2.weight', 'encoder.down_blocks.2.resnets.1.norm1.bias', 'encoder.down_blocks.2.resnets.1.norm1.weight', 'encoder.down_blocks.2.resnets.1.norm2.bias', 'encoder.down_blocks.2.resnets.1.norm2.weight', 'encoder.down_blocks.3.resnets.0.conv1.bias', 'encoder.down_blocks.3.resnets.0.conv1.weight', 'encoder.down_blocks.3.resnets.0.conv2.bias', 'encoder.down_blocks.3.resnets.0.conv2.weight', 'encoder.down_blocks.3.resnets.0.norm1.bias', 'encoder.down_blocks.3.resnets.0.norm1.weight', 'encoder.down_blocks.3.resnets.0.norm2.bias', 'encoder.down_blocks.3.resnets.0.norm2.weight', 'encoder.down_blocks.3.resnets.1.conv1.bias', 'encoder.down_blocks.3.resnets.1.conv1.weight', 'encoder.down_blocks.3.resnets.1.conv2.bias', 'encoder.down_blocks.3.resnets.1.conv2.weight', 'encoder.down_blocks.3.resnets.1.norm1.bias', 'encoder.down_blocks.3.resnets.1.norm1.weight', 'encoder.down_blocks.3.resnets.1.norm2.bias', 'encoder.down_blocks.3.resnets.1.norm2.weight', 'encoder.mid_block.attentions.0.group_norm.bias', 'encoder.mid_block.attentions.0.group_norm.weight', 'encoder.mid_block.attentions.0.to_k.bias', 'encoder.mid_block.attentions.0.to_k.weight', 'encoder.mid_block.attentions.0.to_out.0.bias', 'encoder.mid_block.attentions.0.to_out.0.weight', 'encoder.mid_block.attentions.0.to_q.bias', 'encoder.mid_block.attentions.0.to_q.weight', 'encoder.mid_block.attentions.0.to_v.bias', 'encoder.mid_block.attentions.0.to_v.weight', 'encoder.mid_block.resnets.0.conv1.bias', 'encoder.mid_block.resnets.0.conv1.weight', 'encoder.mid_block.resnets.0.conv2.bias', 'encoder.mid_block.resnets.0.conv2.weight', 'encoder.mid_block.resnets.0.norm1.bias', 'encoder.mid_block.resnets.0.norm1.weight', 'encoder.mid_block.resnets.0.norm2.bias', 'encoder.mid_block.resnets.0.norm2.weight', 'encoder.mid_block.resnets.1.conv1.bias', 'encoder.mid_block.resnets.1.conv1.weight', 'encoder.mid_block.resnets.1.conv2.bias', 'encoder.mid_block.resnets.1.conv2.weight', 'encoder.mid_block.resnets.1.norm1.bias', 'encoder.mid_block.resnets.1.norm1.weight', 'encoder.mid_block.resnets.1.norm2.bias', 'encoder.mid_block.resnets.1.norm2.weight', 'decoder.conv_norm_out.bias', 'decoder.conv_norm_out.weight', 'decoder.mid_block.attentions.0.group_norm.bias', 'decoder.mid_block.attentions.0.group_norm.weight', 'decoder.mid_block.attentions.0.to_k.bias', 'decoder.mid_block.attentions.0.to_k.weight', 'decoder.mid_block.attentions.0.to_out.0.bias', 'decoder.mid_block.attentions.0.to_out.0.weight', 'decoder.mid_block.attentions.0.to_q.bias', 'decoder.mid_block.attentions.0.to_q.weight', 'decoder.mid_block.attentions.0.to_v.bias', 'decoder.mid_block.attentions.0.to_v.weight', 'decoder.mid_block.resnets.0.conv1.bias', 'decoder.mid_block.resnets.0.conv1.weight', 'decoder.mid_block.resnets.0.conv2.bias', 'decoder.mid_block.resnets.0.conv2.weight', 'decoder.mid_block.resnets.0.norm1.bias', 'decoder.mid_block.resnets.0.norm1.weight', 'decoder.mid_block.resnets.0.norm2.bias', 'decoder.mid_block.resnets.0.norm2.weight', 'decoder.mid_block.resnets.1.conv1.bias', 'decoder.mid_block.resnets.1.conv1.weight', 'decoder.mid_block.resnets.1.conv2.bias', 'decoder.mid_block.resnets.1.conv2.weight', 'decoder.mid_block.resnets.1.norm1.bias', 'decoder.mid_block.resnets.1.norm1.weight', 'decoder.mid_block.resnets.1.norm2.bias', 'decoder.mid_block.resnets.1.norm2.weight', 'decoder.up_blocks.0.resnets.0.conv1.bias', 'decoder.up_blocks.0.resnets.0.conv1.weight', 'decoder.up_blocks.0.resnets.0.conv2.bias', 'decoder.up_blocks.0.resnets.0.conv2.weight', 'decoder.up_blocks.0.resnets.0.norm1.bias', 'decoder.up_blocks.0.resnets.0.norm1.weight', 'decoder.up_blocks.0.resnets.0.norm2.bias', 'decoder.up_blocks.0.resnets.0.norm2.weight', 'decoder.up_blocks.0.resnets.1.conv1.bias', 'decoder.up_blocks.0.resnets.1.conv1.weight', 'decoder.up_blocks.0.resnets.1.conv2.bias', 'decoder.up_blocks.0.resnets.1.conv2.weight', 'decoder.up_blocks.0.resnets.1.norm1.bias', 'decoder.up_blocks.0.resnets.1.norm1.weight', 'decoder.up_blocks.0.resnets.1.norm2.bias', 'decoder.up_blocks.0.resnets.1.norm2.weight', 'decoder.up_blocks.0.resnets.2.conv1.bias', 'decoder.up_blocks.0.resnets.2.conv1.weight', 'decoder.up_blocks.0.resnets.2.conv2.bias', 'decoder.up_blocks.0.resnets.2.conv2.weight', 'decoder.up_blocks.0.resnets.2.norm1.bias', 'decoder.up_blocks.0.resnets.2.norm1.weight', 'decoder.up_blocks.0.resnets.2.norm2.bias', 'decoder.up_blocks.0.resnets.2.norm2.weight', 'decoder.up_blocks.0.upsamplers.0.conv.bias', 'decoder.up_blocks.0.upsamplers.0.conv.weight', 'decoder.up_blocks.1.resnets.0.conv1.bias', 'decoder.up_blocks.1.resnets.0.conv1.weight', 'decoder.up_blocks.1.resnets.0.conv2.bias', 'decoder.up_blocks.1.resnets.0.conv2.weight', 'decoder.up_blocks.1.resnets.0.norm1.bias', 'decoder.up_blocks.1.resnets.0.norm1.weight', 'decoder.up_blocks.1.resnets.0.norm2.bias', 'decoder.up_blocks.1.resnets.0.norm2.weight', 'decoder.up_blocks.1.resnets.1.conv1.bias', 'decoder.up_blocks.1.resnets.1.conv1.weight', 'decoder.up_blocks.1.resnets.1.conv2.bias', 'decoder.up_blocks.1.resnets.1.conv2.weight', 'decoder.up_blocks.1.resnets.1.norm1.bias', 'decoder.up_blocks.1.resnets.1.norm1.weight', 'decoder.up_blocks.1.resnets.1.norm2.bias', 'decoder.up_blocks.1.resnets.1.norm2.weight', 'decoder.up_blocks.1.resnets.2.conv1.bias', 'decoder.up_blocks.1.resnets.2.conv1.weight', 'decoder.up_blocks.1.resnets.2.conv2.bias', 'decoder.up_blocks.1.resnets.2.conv2.weight', 'decoder.up_blocks.1.resnets.2.norm1.bias', 'decoder.up_blocks.1.resnets.2.norm1.weight', 'decoder.up_blocks.1.resnets.2.norm2.bias', 'decoder.up_blocks.1.resnets.2.norm2.weight', 'decoder.up_blocks.1.upsamplers.0.conv.bias', 'decoder.up_blocks.1.upsamplers.0.conv.weight', 'decoder.up_blocks.2.resnets.0.conv1.bias', 'decoder.up_blocks.2.resnets.0.conv1.weight', 'decoder.up_blocks.2.resnets.0.conv2.bias', 'decoder.up_blocks.2.resnets.0.conv2.weight', 'decoder.up_blocks.2.resnets.0.conv_shortcut.bias', 'decoder.up_blocks.2.resnets.0.conv_shortcut.weight', 'decoder.up_blocks.2.resnets.0.norm1.bias', 'decoder.up_blocks.2.resnets.0.norm1.weight', 'decoder.up_blocks.2.resnets.0.norm2.bias', 'decoder.up_blocks.2.resnets.0.norm2.weight', 'decoder.up_blocks.2.resnets.1.conv1.bias', 'decoder.up_blocks.2.resnets.1.conv1.weight', 'decoder.up_blocks.2.resnets.1.conv2.bias', 'decoder.up_blocks.2.resnets.1.conv2.weight', 'decoder.up_blocks.2.resnets.1.norm1.bias', 'decoder.up_blocks.2.resnets.1.norm1.weight', 'decoder.up_blocks.2.resnets.1.norm2.bias', 'decoder.up_blocks.2.resnets.1.norm2.weight', 'decoder.up_blocks.2.resnets.2.conv1.bias', 'decoder.up_blocks.2.resnets.2.conv1.weight', 'decoder.up_blocks.2.resnets.2.conv2.bias', 'decoder.up_blocks.2.resnets.2.conv2.weight', 'decoder.up_blocks.2.resnets.2.norm1.bias', 'decoder.up_blocks.2.resnets.2.norm1.weight', 'decoder.up_blocks.2.resnets.2.norm2.bias', 'decoder.up_blocks.2.resnets.2.norm2.weight', 'decoder.up_blocks.2.upsamplers.0.conv.bias', 'decoder.up_blocks.2.upsamplers.0.conv.weight', 'decoder.up_blocks.3.resnets.0.conv1.bias', 'decoder.up_blocks.3.resnets.0.conv1.weight', 'decoder.up_blocks.3.resnets.0.conv2.bias', 'decoder.up_blocks.3.resnets.0.conv2.weight', 'decoder.up_blocks.3.resnets.0.conv_shortcut.bias', 'decoder.up_blocks.3.resnets.0.conv_shortcut.weight', 'decoder.up_blocks.3.resnets.0.norm1.bias', 'decoder.up_blocks.3.resnets.0.norm1.weight', 'decoder.up_blocks.3.resnets.0.norm2.bias', 'decoder.up_blocks.3.resnets.0.norm2.weight', 'decoder.up_blocks.3.resnets.1.conv1.bias', 'decoder.up_blocks.3.resnets.1.conv1.weight', 'decoder.up_blocks.3.resnets.1.conv2.bias', 'decoder.up_blocks.3.resnets.1.conv2.weight', 'decoder.up_blocks.3.resnets.1.norm1.bias', 'decoder.up_blocks.3.resnets.1.norm1.weight', 'decoder.up_blocks.3.resnets.1.norm2.bias', 'decoder.up_blocks.3.resnets.1.norm2.weight', 'decoder.up_blocks.3.resnets.2.conv1.bias', 'decoder.up_blocks.3.resnets.2.conv1.weight', 'decoder.up_blocks.3.resnets.2.conv2.bias', 'decoder.up_blocks.3.resnets.2.conv2.weight', 'decoder.up_blocks.3.resnets.2.norm1.bias', 'decoder.up_blocks.3.resnets.2.norm1.weight', 'decoder.up_blocks.3.resnets.2.norm2.bias', 'decoder.up_blocks.3.resnets.2.norm2.weight']
K-Model Created: {'storage_dtype': 'gguf', 'computation_dtype': torch.float16}
Calculating sha256 for F:\Stable-diffusion\FLUX\flux1-dev-Q4_0.gguf: e9c9d702d0ef5edfef9c20918a1477099d4168186ab8fc005f3aa3a743c3d483
Model loaded in 12.4s (forge model load: 12.4s).
Skipping unconditional conditioning when CFG = 1. Negative Prompts are ignored.
To load target model JointTextEncoder
Begin to load 1 model
[Memory Management] Current Free GPU Memory: 9810.00 MB
[Memory Management] Required Model Memory: 5153.49 MB
[Memory Management] Required Inference Memory: 1024.00 MB
[Memory Management] Estimated Remaining GPU Memory: 3632.51 MB
LoRA patching has taken 36.70 seconds
Moving model(s) has taken 36.72 seconds
Distilled CFG Scale: 3.5
To load target model KModel
Begin to load 1 model
[Memory Management] Current Free GPU Memory: 9710.04 MB
[Memory Management] Required Model Memory: 6476.55 MB
[Memory Management] Required Inference Memory: 1024.00 MB
[Memory Management] Estimated Remaining GPU Memory: 2209.49 MB
LoRA patching has taken 6.87 seconds
Moving model(s) has taken 10.95 seconds
100%|██████████████████████████████████████████████████████████████████████████████████| 20/20 [05:22<00:00, 16.10s/it]
To load target model IntegratedAutoencoderKL███████████████████████████████████████████| 20/20 [05:04<00:00, 15.41s/it]
Begin to load 1 model
[Memory Management] Current Free GPU Memory: 9691.94 MB
[Memory Management] Required Model Memory: 319.75 MB
[Memory Management] Required Inference Memory: 1024.00 MB
[Memory Management] Estimated Remaining GPU Memory: 8348.19 MB
LoRA patching has taken 0.12 seconds
Moving model(s) has taken 2.47 seconds
C:\Users\ZeroCool22\Desktop\webui_forge\webui\modules\processing.py:1003: RuntimeWarning: invalid value encountered in cast
x_sample = x_sample.astype(np.uint8)
Total progress: 100%|██████████████████████████████████████████████████████████████████| 20/20 [05:09<00:00, 15.49s/it]
Total progress: 100%|██████████████████████████████████████████████████████████████████| 20/20 [05:09<00:00, 15.41s/it]
I'm having the same issue, if I change the vae from full to TAESD it will finish but the image wont be in the correct resolution
Sampling method set to Euler. Schedule type is set to Beta, and the image can be generated normally.
Sampling method set to Euler. Schedule type is set to Beta, and the image can be generated normally.
Tried this, it didnt work :(, livepreview works until the last moment.
Memory Management] Required Inference Memory: 1024.00 MB [Memory Management] Estimated Remaining GPU Memory: 7789.07 MB Moving model(s) has taken 2.46 seconds C:\Users\n3utr\Downloads\webui_forge_cu121_torch231\webui\modules\processing.py:1003: RuntimeWarning: invalid value encountered in cast x_sample = x_sample.astype(np.uint8)
@IsaiChristian You are missing the [ae.safetensors],https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main
@IsaiChristian You are missing the [ae.safetensors],https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main
You were totally right, thanks!
@IsaiChristian You are missing the [ae.safetensors],https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main
It must be inside text_encoder or VAE folder?
@IsaiChristian You are missing the [ae.safetensors],https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main
It must be inside text_encoder or VAE folder?
VAE
@IsaiChristian You are missing the [ae.safetensors],https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main
It must be inside text_encoder or VAE folder?
VAE
Thx.
Why can't I?
@qw381523977 Recommend you download the bnb-nf4-v2 model so that you don't have to load the vae model additionally
@qw381523977 Recommend you download the bnb-nf4-v2 model so that you don't have to load the vae model additionally
Yes, this version of flux does work out of the box
@qw381523977 Recommend you download the bnb-nf4-v2 model so that you don't have to load the vae model additionally
Excuse me, so with that model, we don't need to use this?:
@qw381523977 Recommend you download the bnb-nf4-v2 model so that you don't have to load the vae model additionally
Excuse me, so with that model, we don't need to use this?:
Yes, they are all integrated into the BNB-NF4-V2 model
@qw381523977 Recommend you download the bnb-nf4-v2 model so that you don't have to load the vae model additionally
Excuse me, so with that model, we don't need to use this?:
Yes, they are all integrated into the BNB-NF4-V2 model
Can confirm, BNB-NF4-V2 generates images without additional models required.
i have both the vae and everthing set up, the image is shown generating in live but then it turns up black.
for me it will only works using the fp16, Im using dev...
I don't even know what I did wrong, I'm new to the flux,pls help
