模型预测问题
按照步骤使用p-tuning v2微调chatglm2-6b,微调之后切换v0.1,并在predict_pt中使用微调模型路径,运行后报如下错误:
raise RuntimeError(f"Error(s) in loading state_dict for {model.class.name}:\n\t{error_msg}")
RuntimeError: Error(s) in loading state_dict for ChatGLMForConditionalGeneration:
size mismatch for transformer.prefix_encoder.embedding.weight: copying a param with shape torch.Size([16, 14336]) from checkpoint, the shape in current model is torch.Size([16, 4096]).
size mismatch for transformer.prefix_encoder.trans.0.weight: copying a param with shape torch.Size([4096, 14336]) from checkpoint, the shape in current model is torch.Size([4096, 4096]).
size mismatch for transformer.prefix_encoder.trans.2.weight: copying a param with shape torch.Size([14336, 4096]) from checkpoint, the shape in current model is torch.Size([229376, 4096]).
size mismatch for transformer.prefix_encoder.trans.2.bias: copying a param with shape torch.Size([14336]) from checkpoint, the shape in current model is torch.Size([229376]).
You may consider adding ignore_mismatched_sizes=True in the model from_pretrained method.
Process finished with exit code 1
希望作者能更新一下预测步骤。
后面我更新一下预测代码吧,感觉不少人需要
可以看我的PR https://github.com/liucongg/ChatGLM-Finetuning/pull/99
from transformers import AutoConfig, AutoModel, AutoTokenizer import torch
载入Tokenizer
tokenizer = AutoTokenizer.from_pretrained("/sdc/pre_trained_model/chatglm2-6b/", trust_remote_code=True) config = AutoConfig.from_pretrained("/sdc/pre_trained_model/chatglm2-6b/", trust_remote_code=True, pre_seq_len=16) model = AutoModel.from_pretrained("/sdc/pre_trained_model/chatglm2-6b/", config=config, trust_remote_code=True)
#加载pt2 finetune模型 CHECKPOINT_PATH ="./output-glm/epoch-2-step-4654/pytorch_model-00002-of-00002.bin" prefix_state_dict = torch.load(CHECKPOINT_PATH) prefix_state_dict_v1 = torch.load("./output-glm/epoch-2-step-4654/pytorch_model-00001-of-00002.bin") prefix_state_dict.update(prefix_state_dict_v1)
for key in ["transformer.prefix_encoder.trans.0.weight", "transformer.prefix_encoder.trans.0.bias", "transformer.prefix_encoder.trans.2.weight", "transformer.prefix_encoder.trans.2.bias"]: prefix_state_dict.pop(key) model.load_state_dict(prefix_state_dict, strict=True)
我用这个方法加载成功了,但是我不知道为啥"transformer.prefix_encoder.trans.0.weight这些需要重参数中移除,这样是否正确,能否提供一下你在使用deepspeed训练后的预测文件吗
我也比较关注,目前ft完了之后不知道怎么实际测试推理效果
可以看我的PR #99
我试了一下,跑的时候找不到pytorch_model这个文件,哪里可以找到这个文件?我生成的都是pytorch_model-00001-of-00002.bin之类的
可以看我的PR #99
我试了一下,跑的时候找不到pytorch_model这个文件,哪里可以找到这个文件?我生成的都是pytorch_model-00001-of-00002.bin之类的
我改了train.py里模型的存储和载入方式,只存储prefix部分的权重,chatglm本身的权重可以拿原始的权重