Mem3D
Mem3D copied to clipboard
Volumetric memory network for interactive medical image segmentation
We propose a novel memory-augmented network named VMN for interactive segmentation of volumetric medical data.
Paper
This repository provides the official PyTorch implementation of VMN in the following papers:
Volumetric memory network for interactive medical image segmentation
Tianfei Zhou, Liulei Li, Gustav Bredell, Jianwu Li, and Ender Konukoglu
Biomedical Image Computing, CVL, ETH Zurich | Beijing Institute of Technology
Medical Image Analysis (MedIA) [Paper]
Elsevier-MedIA Best Paper Award
Quality-Aware Memory Network for Interactive Volumetric Image Segmentation
Tianfei Zhou, Liulei Li, Gustav Bredell, Jianwu Li, and Ender Konukoglu
Biomedical Image Computing, CVL, ETH Zurich | Beijing Institute of Technology
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) [Paper]
Preparation
Dataset Download
Download MSD and KiTS. This repo provides dataloaders for MSD, you can some modification to adapt them to other datasets.
Dataset Organization
To run the training and testing code, we require the following data organization format
${ROOT}--
|--KiTS
|--MSD
│ ├── ImageSets06
│ │ └── train.txt
│ │ └── test.txt
│ ├── ImageSest10
│ ├── Task06_mask
│ │ ├── lung_001
│ │ │ ├── 0.png
│ │ │ ├── ...
│ │ │ └── 199.png
│ │ ├── lung_002
│ │ ├── ...
│ │ └── lung_060
│ ├── Task06_origin
│ │ ├── lung_001
│ │ │ ├── 0.png
│ │ │ ├── ...
│ │ │ └── 199.png
│ │ ├── ...
│ │ └── lung_060
│ ├── ImageSets10
│ ├── Task10_mask
│ └── Task10_origin
└──${DATASET3}
Download Pretrained Weights
- Download the weight pretrained on YouTube-VOS for VMN
- Update the
initial
attribution inoption.py
Training and Testing
- 2D Interactive Network
Mem3D/
└── (train/test)_(dextr/hybrid/inter/scribble/two_point).py
- Volumetric Memory Network
Mem3D/
├── (train/test)_STM.py. # without Quality Assessment
└── train_SAQ.py # with Quality Assessment
- Round Based 3D Interactive Segmentation
Mem3D/
├── eval_SAQ.py # w QA
└── eval_IOG_refine_dextr.py # w/o QA
- Volume-wise Dice Evaluation
Mem3D/
└── eval.py
Acknowledgements
Citation
If you use VMN for your research, please cite our papers:
@article{zhou2022volumetric,
title={Volumetric memory network for interactive medical image segmentation},
author={Zhou, Tianfei and Li, Liulei and Bredell, Gustav and Li, Jianwu and Konukoglu, Ender},
journal={Medical Image Analysis},
year={2022},
publisher={Elsevier}
}
@inproceedings{zhou2021quality,
title={Quality-aware memory network for interactive volumetric image segmentation},
author={Zhou, Tianfei and Li, Liulei and Bredell, Gustav and Li, Jianwu and Konukoglu, Ender},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={560--570},
year={2021},
organization={Springer}
}