AS-GCN
AS-GCN copied to clipboard
"kinetics" config?
Hi,
Do you happen to have the kinetics
config available to share so that your results are easier to reproduce as your repo seemed to contain only the NTU-RGBD
configs?
Thanks
Essentially needed to change three parameters:
num_class: 400
layout: 'openpose'
node_num: 18
I used the following train_aim.yaml
work_dir: ./work_dir/recognition/kinetics/AS_GCN
feeder: feeder.feeder.Feeder
train_feeder_args:
data_path: ../data/kinetics/train_data_joint.npy
label_path: ../data/kinetics/train_label.pkl
random_move: True
repeat_pad: True
down_sample: True
test_feeder_args:
data_path: ../data/kinetics/val_data_joint.npy
label_path: ../data/kinetics/val_label.pkl
random_move: False
repeat_pad: True
down_sample: True
model1: net.as_gcn.Model
model1_args:
in_channels: 3
num_class: 400
dropout: 0.5
edge_importance_weighting: True
graph_args:
layout: 'openpose'
strategy: 'spatial'
max_hop: 4
model2: net.utils.adj_learn.AdjacencyLearn
model2_args:
n_in_enc: 150
n_hid_enc: 128
edge_types: 3
n_in_dec: 3
n_hid_dec: 128
node_num: 18
weight_decay: 0.0001
base_lr1: 0.1
base_lr2: 0.0005
step: [50, 70, 90]
device: [0]
batch_size: 32
test_batch_size: 32
start_epoch: 0
num_epoch: 10
num_worker: 4
max_hop_dir: max_hop_4
lamda_act_dir: lamda_05
lamda_act: 0.5
and train.yaml
do they seem correct to you
work_dir: ./work_dir/recognition/kinetics/AS_GCN
weights1: ./work_dir/recognition/kinetics/AS_GCN/max_hop_4/lamda_05/epoch9_model1.pt
weights2: ./work_dir/recognition/kinetics/AS_GCN/max_hop_4/lamda_05/epoch9_model2.pt
feeder: feeder.feeder.Feeder
train_feeder_args:
data_path: ../data/kinetics/train_data_joint.npy
label_path: ../data/kinetics/train_label.pkl
random_move: True
repeat_pad: True
down_sample: True
test_feeder_args:
data_path: ../data/kinetics/val_data_joint.npy
label_path: ../data/kinetics/val_label.pkl
random_move: False
repeat_pad: True
down_sample: True
model1: net.as_gcn.Model
model1_args:
in_channels: 3
num_class: 400
dropout: 0.5
edge_importance_weighting: True
graph_args:
layout: 'kinetics'
strategy: 'openpose'
max_hop: 4
model2: net.utils.adj_learn.AdjacencyLearn
model2_args:
n_in_enc: 150
n_hid_enc: 128
edge_types: 3
n_in_dec: 3
n_hid_dec: 128
node_num: 18
weight_decay: 0.0001
base_lr1: 0.1
base_lr2: 0.0005
step: [50, 70, 90]
device: [0]
batch_size: 32
test_batch_size: 32
start_epoch: 10
num_epoch: 100
num_worker: 4
max_hop_dir: max_hop_4
lamda_act_dir: lamda_05
lamda_act: 0.5
I changed the training profile to be the same as yours, but reported an error that the kinetics layer could not be found