FSRNet-Tensorflow
FSRNet-Tensorflow copied to clipboard
Tensorflow implement FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
Tensorflow implement FSRNet based on SRN-Deblur
Testing
Download pretrained models and unzip, make sure the model path is ./checkpoints/color/checkpoints/deblur.model*
--input_path=<TEST_FOLDER>
and save the outputs to --output_path=<OUTPUT_FOLDER>
.
For example:
python run_model.py --input_path=./testing_set --output_path=./testing_res --gpu=0 --model=color --phase=test --height=128 --width=128
Training
- use data_loader.py to generate tfrecords in main function
- Hyper parameters such as batch size, learning rate, epoch number can be tuned through command line:
python run_model.py --phase=train --batch=16 --lr=1e-4 --epoch=500
Some problems
- Since the author do not open the code of cropping the face, so the dataset i use is different from theirs, our face is bigger than theirs.
- I use face alignment to generate landmarks.
- Download model from model password: 0z3l