euroscipy-2019-scikit-learn-tutorial
euroscipy-2019-scikit-learn-tutorial copied to clipboard
EuroSciPy 2019 - scikit-learn tutorial
All notebook material: https://github.com/lesteve/euroscipy-2019-scikit-learn-tutorial/
Some intro slides: http://ogrisel.github.io/decks/2017_intro_sklearn
Follow the tutorial online
-
Browse the static content online (pre-rendered outputs) using nbviewer
You need an internet connection but you will not have to install any package locally.
Running the tutorial locally
Dependencies
The tutorials will require the following packages:
- python>=3.6
- jupyter
- scikit-learn
- pandas
- pandas-profiling
- matplotlib
- seaborn
Local install
We provide both requirements.txt and environment.yml to install packages.
You can install the packages using pip:
$ pip install -r requirements.txt
You can create an sklearn-tutorial conda environment executing:
$ conda env create -f environment.yml
and later activate the environment:
$ conda activate sklearn-tutorial
You might also only update your current environment using:
$ conda env update --prefix ./env --file environment.yml --prune
Contributing
This repo uses: Jupytext doc
To synchronize the notebooks and the Python scripts (based on filestamps, only input cells content is modified in the notebooks):
$ jupytext --sync notebooks/*.ipynb
or simply use:
$ make sync
If you create a new notebook, you need to set-up the text files it is going to be paired with:
$ jupytext --set-formats notebooks//ipynb,python_scripts//py:percent notebooks/*.ipynb
or simply use:
$ make format
To render all the notebooks (from time to time, slow to run):
$ make render