Ranger-Deep-Learning-Optimizer
Ranger-Deep-Learning-Optimizer copied to clipboard
RangerVA with GC
Hello,
Thank you for your work on these optimizers btw. I was testing a couple out and was performing quite well with the RangerVA originally. Then, when your gradient centralization was added I got further improvements but it also seemed to be overtraining the train set more easily despite using the same parameters. Therefore, I tried to implement combining the gradient centralization into the RangerVA algorithm and so far it seems to be performing quite well and faster since it seems I can use larger batch sizes. I was wondering if you could quickly check, whenever you have some free time, if I implemented correctly in the code below since you are so used to this optimizer.
Best
`` class RangerVA(Optimizer):
def __init__(self, params, lr=1e-3,
alpha=0.5, k=6, n_sma_threshhold=5, betas=(.95,0.999),
eps=1e-5, weight_decay=0, amsgrad=True, transformer='softplus', smooth=50,
grad_transformer='square',use_gc=True, gc_conv_only=False):
#parameter checks
if not 0.0 <= alpha <= 1.0:
raise ValueError(f'Invalid slow update rate: {alpha}')
if not 1 <= k:
raise ValueError(f'Invalid lookahead steps: {k}')
if not lr > 0:
raise ValueError(f'Invalid Learning Rate: {lr}')
if not eps > 0:
raise ValueError(f'Invalid eps: {eps}')
#prep defaults and init torch.optim base
defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas,
n_sma_threshhold=n_sma_threshhold, eps=eps, weight_decay=weight_decay,
smooth=smooth, transformer=transformer, grad_transformer=grad_transformer,
amsgrad=amsgrad,use_gc=use_gc, gc_conv_only=gc_conv_only )
super().__init__(params,defaults)
#adjustable threshold
self.n_sma_threshhold = n_sma_threshhold
#look ahead params
self.alpha = alpha
self.k = k
#radam buffer for state
self.radam_buffer = [[None,None,None] for ind in range(10)]
#gc on or off
self.use_gc=use_gc
#level of gradient centralization
self.gc_gradient_threshold = 3 if gc_conv_only else 1
print(f"Ranger optimizer loaded. \nGradient Centralization usage = {self.use_gc}")
if (self.use_gc and self.gc_gradient_threshold==1):
print(f"GC applied to both conv and fc layers")
elif (self.use_gc and self.gc_gradient_threshold==3):
print(f"GC applied to conv layers only")
def __setstate__(self, state):
print("set state called")
super(RangerVA, self).__setstate__(state)
def step(self, closure=None):
loss = None
#Evaluate averages and grad, update param tensors
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.double()
if grad.is_sparse:
raise RuntimeError('Ranger optimizer does not support sparse gradients')
amsgrad = group['amsgrad']
smooth = group['smooth']
grad_transformer = group['grad_transformer']
p_data_fp32 = p.data.double()
state = self.state[p] #get state dict for this param
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
#look ahead weight storage now in state dict
state['slow_buffer'] = torch.empty_like(p.data)
state['slow_buffer'].copy_(p.data)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
#begin computations
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denomc = max_exp_avg_sq.clone()
else:
denomc = exp_avg_sq.clone()
#GC operation for Conv layers and FC layers
if grad.dim() > self.gc_gradient_threshold:
grad.add_(-grad.mean(dim = tuple(range(1,grad.dim())), keepdim = True))
state['step'] += 1
#compute variance mov avg
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
#compute mean moving avg
exp_avg.mul_(beta1).add_(1 - beta1, grad)
buffered = self.radam_buffer[int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
buffered[1] = N_sma
if N_sma > self.n_sma_threshhold:
step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
else:
step_size = 1.0 / (1 - beta1 ** state['step'])
buffered[2] = step_size
##transformer
if grad_transformer == 'square':
grad_tmp = grad**2
denomc.sqrt_()
elif grad_transformer == 'abs':
grad_tmp = grad.abs()
exp_avg_sq.mul_(beta2).add_((1 - beta2)*grad_tmp)
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
# ...let's use calibrated alr
if N_sma > self.n_sma_threshhold:
if group['transformer'] =='softplus':
sp = torch.nn.Softplus( smooth)
denomf = sp( denomc)
p_data_fp32.addcdiv_(-step_size, exp_avg, denomf )
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
else:
p_data_fp32.add_(-step_size * group['lr'], exp_avg)
p.data.copy_(p_data_fp32)
#integrated look ahead...
#we do it at the param level instead of group level
if state['step'] % group['k'] == 0:
slow_p = state['slow_buffer'] #get access to slow param tensor
slow_p.add_(self.alpha, p.data - slow_p) #(fast weights - slow weights) * alpha
p.data.copy_(slow_p) #copy interpolated weights to RAdam param tensor
return loss