rpi-vision
rpi-vision copied to clipboard
Tools and examples for getting started with object detection + classification tasks on Raspberry Pi, using Tensorflow 2.0 and Keras. READ ME FIRST: https://medium.com/@grepLeigh/portable-computer-vis...
RPI Vision
Deep object detection on a Raspberry Pi using Tensorflow & Keras.
Materials
- Raspberry Pi 3 Model B
- SD card 8+ GB
- 3.5" 480 x 320 TFT/SPI screen (XPT2046 controller)
Install Dependencies (on Raspberry Pi)
- Install Raspbian
- Configure WiFi (optional, but recommended)
- @todo link to other basic Pi configuration tasks outside the scope of this guide (add authorized SSH keys, disable password, change hostname)
- Install system dependencies
sudo apt-get update && \
sudo apt-get upgrade && \
sudo apt-get install git python3-dev python3-pip \
crossbuild-essential-armhf libatlas-base-dev \
libhdf5-dev libhdf5-serial-dev \
libopenjp2-7-dev ibtiff5 build-essential cmake pkg-config && \
sudo pip3 install -U virtualenv
git clone [email protected]:leigh-johnson/rpi-vision.git
cd rpi-vision
pip install -r rpi.requirements.txt
Install TFT Drivers
WARNING these instructions only apply to the 3.5" TFT (XPT2046) screen. If you're using a difference size or controller, please refer to the instructions in LCD-show#README.
git clone [email protected]:goodtft/LCD-show.git
chmod -R 755 LCD-show
cd LCD-show
sudo ./LCD35-show
Install FBCP
This step is only neccessary if you're using an SPI Display. If you're using an HDMI display, skip this step.
Updating /boot/config.txt
For better TFT screen performance, add the following to /boot/config.txt
. Refer to Raspbian's video options in config.txt if you're using a different display.
@ todo
Setup Google Cloud (optional)
@todo
Running a trainer (GPU Accelerated)
pip install -r trainer.requirements.txt
@todo API docs
Training a custom CNN
@todo API docs
Analyzing via Tensorboard
tensorboard --logdir gs://my-gcs-bucket/my-model/logs/