prediction
prediction copied to clipboard
Add Support for Additional Model Classes
This is a list of requested model classes to potentially support in prediction. It is sorted by completion status of model support, and then by function name. In order to support a model class, the package needs to provide a predict() method. If this is not provided, it is not (presently) supportable.
Supported
- [x]
arm::bayesglm()(inherits from "glm") - [x]
aod::betabin(),aod::negbin(),aod::quasibin(),aod::quasipois(), - [x]
betareg::betareg()(class"betareg"), withpredict()method (but nose.fitarg) - [x]
biglm::biglm()andbiglm::bigglm() - [x]
brglm::brglm()(inherits from "glm") - [x]
mda::bruto() - [x]
ordinal::clm() - [x] crch censored/truncated regression methods (#4)
- [x]
earth::earth() - [x]
mda::fda() - [x]
gam::gam() - [x]
kernlab::gausspr() - [x]
gee::gee() - [x]
stats::glm() - [x]
glmnet::glmnet() - [x]
glmx::glmx()(class"glmx") - [x]
MASS::glm.nb()(inherits from "glm") - [x]
glmx::hetglm()(class"hetglm") - [x]
pscl::hurdle() - [x]
AER::ivreg() - [x]
caret::knnreg() - [x]
kernlab::kqr() - [x]
kernlab::ksvm() - [x]
MASS::lda() - [x]
stats::lm() - [x] lme4 (
lmer(),glmer(), ...) (butlme4:::predict.merMod()has nose.fitargument) - [x] nlme
nlme:::predict.lme()has nose.fitortypeargumentsnlme:::predict.gls()has nose.fitargument.
- [x]
stats::loess()(predict()method usesserather thanse.fit) - [x]
MASS::lqs() - [x]
mda::mars() - [x]
MASS::mca() - [x]
mclogit::mclogit()(class"mclogit"), which is basically "glm" - [x]
mda::mda() - [x]
mlogit::mlogit() - [x]
mnlogit::mnlogit() - [x]
MNP::mnp() - [x]
nnet::multinom()or any nnet model generally - [x]
e1071::naiveBayes() - [x] nls (requires setting
model = TRUEin original call; and then gettingterm(object[["model"]])) - [x]
MASS::polr()(haspredict()method withtype = c("class", "probs"))- [x]
arm::bayespolr()(covered by general"polr"method)
- [x]
- [x]
mda::polyreg() - [x]
caret::predict() - [x]
MASS::qda() - [x]
quantreg::rq() - [x]
rpart::rpart() - [x]
sampleSelection::selection()(class"select") - [x]
speedglm::speedglm()andspeedglm::speedlm() - [x]
survival::survreg()- coxph class has different
typevalues forpredict():c("lp", "risk", "expected")
- coxph class has different
- [x]
survey::svyglm() - [x]
AER::tobit() - [x]
truncreg::truncreg() - [x]
pscl::zeroinfl()
Potentially supportable
- [ ]
bamlss::bamlss() - [ ]
dynlm::dynlm() - [ ]
gnm::gnm() - [ ]
LARF::larf() - [ ]
bbmle::mle2() - [ ]
mpt::mpt() - [ ] np (non-parametric regression)
- [ ] rms
- [ ] "stanreg" objects from rstanarm
- [ ]
VGAM::vglm() - [ ]
mgcv::bam() - [ ]
mgcv::gam() - [ ]
gamlss::gamlss() - [ ]
mgcv::gamm() - [ ]
VGAM::vgam() - [ ] spdep
- [ ]
sphet::spreg() - [ ]
splm::spml() - [ ]
splm::spgm()
Not currently supportable
- [ ] censReg (has a
margEff()generic but nopredict()method) - [ ]
ordinal::clmm()(nopredict()method) - [ ]
lfe::felm()(nopredict()method) - [ ] dispmod:
lm.disp(),glm.binomial.disp(),glm.poisson.disp()(nopredict()method) - [ ] geepack:
geeglm(),geese(),ordgee()(nopredict()methods) - [ ] ghyp (ORPHANED)
- [ ]
gmm::gmm()(nopredict()method) - [ ]
gmnl::gmnl()(nopredict()method) - [ ]
GeneralizedHyperbolic::hyperblm()(nopredict()method) - [ ]
ivprobit::ivprobit()(nopredict()method) - [ ]
class::knn()(does not construct a model object) - [ ]
sem::tsls()(nopredict()method) - [ ]
plm::plm()(non-exported predict method) - [ ]
plm::pglm() - [ ]
survey::svyolr()(nopredict()method)
(Note: this is migrated from: https://github.com/leeper/margins/issues/3)
@leeper I'd add the other survey package functions. While many of them are based on survey::svyglm() which are class glm, lm, and svyglm, the survey::svyolr() function is NOT from MASS::polr() and is of class svyolr.
For models produced by plm::plm(), there is a predict method available since plm version 2.6-2.