mathlib4
mathlib4 copied to clipboard
refactor(Mathlib/Data/Seq/Seq): make `Seq'.mem_rec_on` more useful
theorem mem_rec_on {C : Seq α → Prop} {a s} (M : a ∈ s)
(h1 : ∀ b s', a = b ∨ C s' → C (cons b s')) : C s
to
theorem mem_rec_on {a} {C : (s : Seq' α) → a ∈ s → Prop} {s} (M : a ∈ s)
(mem_cons : ∀ s, C (cons a s) (mem_cons a s))
(mem_cons_of_mem : ∀ (y) {s} (h : a ∈ s), C s h → C (cons y s) (mem_cons_of_mem y h)) :
C s M
This change make Seq'.mem_rec_on available in induction tactic.
- [ ] depends on: #13361
This PR consists Continued fractions makes an isomorphism between irrationals and baire space project