aesop
aesop copied to clipboard
`aesop?` suggests unusable `_private.Mathlib.Data.Set.Pointwise.Basic.0.Set.involutiveNeg._eq_1`
import Mathlib
lemma zero_mem_iff_zero_mem_neg (U : Set ℝ)
: 0 ∈ U ↔ 0 ∈ -U := by
aesop?
-- simp_all only [Set.mem_neg, neg_zero] -- this solves it
-- aesop? output for me has another unusable lemma:
-- simp_all only [_private.Mathlib.Data.Set.Pointwise.Basic.0.Set.involutiveNeg._eq_1, Set.mem_neg, neg_zero]
Thanks for reporting! This is either a core issue or a to_additive
issue. Minimisation:
In Mathlib/Min1.lean
:
import Mathlib.Tactic.ToAdditive
class Inv (α : Type _) where
/-- Invert an element of α. -/
inv : α → α
postfix:max "⁻¹" => Inv.inv
class InvolutiveInv (G : Type _) extends Inv G where
protected inv_inv : ∀ x : G, x⁻¹⁻¹ = x
def Set (α : Type _) := α → Prop
instance {α} : Membership α (Set α) := sorry
@[to_additive (attr := simp)]
noncomputable instance involutiveInv {α} [InvolutiveInv α] : InvolutiveInv (Set α) where
inv := sorry
inv_inv s := sorry
structure Real where
instance : InvolutiveInv Real := sorry
instance {n} : OfNat Real n := sorry
In Min.lean
:
import Mathlib.Min1
theorem zero_mem_iff_zero_mem_neg (U : Set Real)
: 0 ∈ U ↔ 0 ∈ U⁻¹ := by
set_option tactic.simp.trace true in
simp_all
-- Try this: simp_all only [_private.Mathlib.Min1.0.involutiveNeg._eq_1]
Zulip discussion: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/simp.20tracing.20suggests.20private.20simp.20theorems