BottleneckTransformers icon indicating copy to clipboard operation
BottleneckTransformers copied to clipboard

cifar效果达不到啊,直接运行main

Open HHEjie123 opened this issue 3 years ago • 4 comments

Current Learning Rate: [0.030934962553363768] [Epoch: 251], Loss: 0.085, Acc: 97.030, Correct 12544.0 / Total 12928.0 [Epoch: 251], Loss: 0.084, Acc: 97.104, Correct 24983.0 / Total 25728.0 [Epoch: 251], Loss: 0.081, Acc: 97.194, Correct 37447.0 / Total 38528.0 [Epoch: 251], Acc: 87.820 Current Learning Rate: [0.030032595786498105] [Epoch: 252], Loss: 0.075, Acc: 97.401, Correct 12592.0 / Total 12928.0 [Epoch: 252], Loss: 0.077, Acc: 97.365, Correct 25050.0 / Total 25728.0 [Epoch: 252], Loss: 0.077, Acc: 97.366, Correct 37513.0 / Total 38528.0 [Epoch: 252], Acc: 86.980 Current Learning Rate: [0.029137946110005482] [Epoch: 253], Loss: 0.064, Acc: 97.857, Correct 12651.0 / Total 12928.0 [Epoch: 253], Loss: 0.066, Acc: 97.777, Correct 25156.0 / Total 25728.0 [Epoch: 253], Loss: 0.070, Acc: 97.610, Correct 37607.0 / Total 38528.0 [Epoch: 253], Acc: 87.350 Current Learning Rate: [0.02825135842836657] [Epoch: 254], Loss: 0.073, Acc: 97.563, Correct 12613.0 / Total 12928.0 [Epoch: 254], Loss: 0.074, Acc: 97.477, Correct 25079.0 / Total 25728.0 [Epoch: 254], Loss: 0.070, Acc: 97.560, Correct 37588.0 / Total 38528.0 [Epoch: 254], Acc: 86.640 Current Learning Rate: [0.02737317453800964] [Epoch: 255], Loss: 0.063, Acc: 97.826, Correct 12647.0 / Total 12928.0 [Epoch: 255], Loss: 0.061, Acc: 97.889, Correct 25185.0 / Total 25728.0 [Epoch: 255], Loss: 0.065, Acc: 97.742, Correct 37658.0 / Total 38528.0 [Epoch: 255], Acc: 87.650 Current Learning Rate: [0.026503732995541415] [Epoch: 256], Loss: 0.064, Acc: 97.803, Correct 12644.0 / Total 12928.0 [Epoch: 256], Loss: 0.064, Acc: 97.831, Correct 25170.0 / Total 25728.0 [Epoch: 256], Loss: 0.063, Acc: 97.861, Correct 37704.0 / Total 38528.0 [Epoch: 256], Acc: 87.970 Current Learning Rate: [0.025643368987227095] [Epoch: 257], Loss: 0.066, Acc: 97.788, Correct 12642.0 / Total 12928.0 [Epoch: 257], Loss: 0.066, Acc: 97.804, Correct 25163.0 / Total 25728.0 [Epoch: 257], Loss: 0.065, Acc: 97.835, Correct 37694.0 / Total 38528.0 [Epoch: 257], Acc: 87.380 Current Learning Rate: [0.02479241419976968] [Epoch: 258], Loss: 0.055, Acc: 98.198, Correct 12695.0 / Total 12928.0 [Epoch: 258], Loss: 0.053, Acc: 98.204, Correct 25266.0 / Total 25728.0 [Epoch: 258], Loss: 0.055, Acc: 98.183, Correct 37828.0 / Total 38528.0 [Epoch: 258], Acc: 87.930 Current Learning Rate: [0.023951196692438358] [Epoch: 259], Loss: 0.049, Acc: 98.213, Correct 12697.0 / Total 12928.0 [Epoch: 259], Loss: 0.051, Acc: 98.231, Correct 25273.0 / Total 25728.0 [Epoch: 259], Loss: 0.054, Acc: 98.108, Correct 37799.0 / Total 38528.0 [Epoch: 259], Acc: 87.880 Current Learning Rate: [0.023120040770595558] [Epoch: 260], Loss: 0.046, Acc: 98.430, Correct 12725.0 / Total 12928.0 [Epoch: 260], Loss: 0.050, Acc: 98.340, Correct 25301.0 / Total 25728.0 [Epoch: 260], Loss: 0.051, Acc: 98.271, Correct 37862.0 / Total 38528.0 [Epoch: 260], Acc: 87.700 Current Learning Rate: [0.022299266860670866] [Epoch: 261], Loss: 0.052, Acc: 98.229, Correct 12699.0 / Total 12928.0 [Epoch: 261], Loss: 0.051, Acc: 98.278, Correct 25285.0 / Total 25728.0 [Epoch: 261], Loss: 0.050, Acc: 98.279, Correct 37865.0 / Total 38528.0 [Epoch: 261], Acc: 88.190 Current Learning Rate: [0.021489191386630774] [Epoch: 262], Loss: 0.046, Acc: 98.391, Correct 12720.0 / Total 12928.0 [Epoch: 262], Loss: 0.046, Acc: 98.395, Correct 25315.0 / Total 25728.0 [Epoch: 262], Loss: 0.047, Acc: 98.378, Correct 37903.0 / Total 38528.0 [Epoch: 262], Acc: 87.440 Current Learning Rate: [0.020690126647990973] [Epoch: 263], Loss: 0.041, Acc: 98.577, Correct 12744.0 / Total 12928.0 [Epoch: 263], Loss: 0.043, Acc: 98.496, Correct 25341.0 / Total 25728.0 [Epoch: 263], Loss: 0.045, Acc: 98.435, Correct 37925.0 / Total 38528.0 [Epoch: 263], Acc: 87.740 Current Learning Rate: [0.019902380699419107] [Epoch: 264], Loss: 0.041, Acc: 98.700, Correct 12760.0 / Total 12928.0 [Epoch: 264], Loss: 0.040, Acc: 98.706, Correct 25395.0 / Total 25728.0 [Epoch: 264], Loss: 0.040, Acc: 98.679, Correct 38019.0 / Total 38528.0 [Epoch: 264], Acc: 87.720 Current Learning Rate: [0.019126257231973805] [Epoch: 265], Loss: 0.037, Acc: 98.824, Correct 12776.0 / Total 12928.0 [Epoch: 265], Loss: 0.038, Acc: 98.764, Correct 25410.0 / Total 25728.0 [Epoch: 265], Loss: 0.039, Acc: 98.713, Correct 38032.0 / Total 38528.0 [Epoch: 265], Acc: 88.020 Current Learning Rate: [0.018362055456025896] [Epoch: 266], Loss: 0.034, Acc: 98.971, Correct 12795.0 / Total 12928.0 [Epoch: 266], Loss: 0.034, Acc: 98.865, Correct 25436.0 / Total 25728.0 [Epoch: 266], Loss: 0.038, Acc: 98.731, Correct 38039.0 / Total 38528.0 [Epoch: 266], Acc: 88.280 Current Learning Rate: [0.01761006998590733] [Epoch: 267], Loss: 0.028, Acc: 99.033, Correct 12803.0 / Total 12928.0 [Epoch: 267], Loss: 0.030, Acc: 98.978, Correct 25465.0 / Total 25728.0 [Epoch: 267], Loss: 0.031, Acc: 98.936, Correct 38118.0 / Total 38528.0 [Epoch: 267], Acc: 88.010 Current Learning Rate: [0.016870590726331475] [Epoch: 268], Loss: 0.030, Acc: 99.033, Correct 12803.0 / Total 12928.0 [Epoch: 268], Loss: 0.031, Acc: 98.989, Correct 25468.0 / Total 25728.0 [Epoch: 268], Loss: 0.032, Acc: 98.928, Correct 38115.0 / Total 38528.0 [Epoch: 268], Acc: 88.690 Current Learning Rate: [0.016143902760629568] [Epoch: 269], Loss: 0.028, Acc: 99.087, Correct 12810.0 / Total 12928.0 [Epoch: 269], Loss: 0.027, Acc: 99.122, Correct 25502.0 / Total 25728.0 [Epoch: 269], Loss: 0.028, Acc: 99.110, Correct 38185.0 / Total 38528.0 [Epoch: 269], Acc: 88.200 Current Learning Rate: [0.015430286240845494] [Epoch: 270], Loss: 0.028, Acc: 99.010, Correct 12800.0 / Total 12928.0 [Epoch: 270], Loss: 0.025, Acc: 99.090, Correct 25494.0 / Total 25728.0 [Epoch: 270], Loss: 0.026, Acc: 99.079, Correct 38173.0 / Total 38528.0 [Epoch: 270], Acc: 88.660 Current Learning Rate: [0.014730016279731955] [Epoch: 271], Loss: 0.028, Acc: 99.103, Correct 12812.0 / Total 12928.0 [Epoch: 271], Loss: 0.025, Acc: 99.172, Correct 25515.0 / Total 25728.0 [Epoch: 271], Loss: 0.026, Acc: 99.164, Correct 38206.0 / Total 38528.0 [Epoch: 271], Acc: 88.780 Best Model Saving... Current Learning Rate: [0.014043362844689204] [Epoch: 272], Loss: 0.023, Acc: 99.273, Correct 12834.0 / Total 12928.0 [Epoch: 272], Loss: 0.026, Acc: 99.122, Correct 25502.0 / Total 25728.0 [Epoch: 272], Loss: 0.025, Acc: 99.167, Correct 38207.0 / Total 38528.0 [Epoch: 272], Acc: 88.590 Current Learning Rate: [0.0133705906536875] [Epoch: 273], Loss: 0.024, Acc: 99.188, Correct 12823.0 / Total 12928.0 [Epoch: 273], Loss: 0.020, Acc: 99.386, Correct 25570.0 / Total 25728.0 [Epoch: 273], Loss: 0.019, Acc: 99.403, Correct 38298.0 / Total 38528.0 [Epoch: 273], Acc: 88.260 Current Learning Rate: [0.0127119590732133] [Epoch: 274], Loss: 0.023, Acc: 99.157, Correct 12819.0 / Total 12928.0 [Epoch: 274], Loss: 0.021, Acc: 99.265, Correct 25539.0 / Total 25728.0 [Epoch: 274], Loss: 0.020, Acc: 99.299, Correct 38258.0 / Total 38528.0 [Epoch: 274], Acc: 88.300 Current Learning Rate: [0.012067722018278455] [Epoch: 275], Loss: 0.018, Acc: 99.373, Correct 12847.0 / Total 12928.0 [Epoch: 275], Loss: 0.018, Acc: 99.378, Correct 25568.0 / Total 25728.0 [Epoch: 275], Loss: 0.018, Acc: 99.377, Correct 38288.0 / Total 38528.0 [Epoch: 275], Acc: 88.700 Current Learning Rate: [0.011438127854531303] [Epoch: 276], Loss: 0.015, Acc: 99.590, Correct 12875.0 / Total 12928.0 [Epoch: 276], Loss: 0.015, Acc: 99.569, Correct 25617.0 / Total 25728.0 [Epoch: 276], Loss: 0.015, Acc: 99.564, Correct 38360.0 / Total 38528.0 [Epoch: 276], Acc: 88.500 Current Learning Rate: [0.010823419302506784] [Epoch: 277], Loss: 0.017, Acc: 99.404, Correct 12851.0 / Total 12928.0 [Epoch: 277], Loss: 0.016, Acc: 99.456, Correct 25588.0 / Total 25728.0 [Epoch: 277], Loss: 0.016, Acc: 99.452, Correct 38317.0 / Total 38528.0 [Epoch: 277], Acc: 88.690 Current Learning Rate: [0.010223833344053286] [Epoch: 278], Loss: 0.014, Acc: 99.520, Correct 12866.0 / Total 12928.0 [Epoch: 278], Loss: 0.015, Acc: 99.518, Correct 25604.0 / Total 25728.0 [Epoch: 278], Loss: 0.014, Acc: 99.525, Correct 38345.0 / Total 38528.0 [Epoch: 278], Acc: 89.290 Best Model Saving... Current Learning Rate: [0.00963960113097138] [Epoch: 279], Loss: 0.012, Acc: 99.629, Correct 12880.0 / Total 12928.0 [Epoch: 279], Loss: 0.013, Acc: 99.600, Correct 25625.0 / Total 25728.0 [Epoch: 279], Loss: 0.013, Acc: 99.624, Correct 38383.0 / Total 38528.0 [Epoch: 279], Acc: 89.070 Current Learning Rate: [0.009070947895900596] [Epoch: 280], Loss: 0.011, Acc: 99.675, Correct 12886.0 / Total 12928.0 [Epoch: 280], Loss: 0.011, Acc: 99.666, Correct 25642.0 / Total 25728.0 [Epoch: 280], Loss: 0.011, Acc: 99.678, Correct 38404.0 / Total 38528.0 [Epoch: 280], Acc: 89.250 Current Learning Rate: [0.008518092865487875] [Epoch: 281], Loss: 0.011, Acc: 99.667, Correct 12885.0 / Total 12928.0 [Epoch: 281], Loss: 0.011, Acc: 99.708, Correct 25653.0 / Total 25728.0 [Epoch: 281], Loss: 0.011, Acc: 99.655, Correct 38395.0 / Total 38528.0 [Epoch: 281], Acc: 89.110 Current Learning Rate: [0.007981249175871482] [Epoch: 282], Loss: 0.011, Acc: 99.652, Correct 12883.0 / Total 12928.0 [Epoch: 282], Loss: 0.011, Acc: 99.670, Correct 25643.0 / Total 25728.0 [Epoch: 282], Loss: 0.010, Acc: 99.689, Correct 38408.0 / Total 38528.0 [Epoch: 282], Acc: 89.260 Current Learning Rate: [0.007460623790513096] [Epoch: 283], Loss: 0.008, Acc: 99.737, Correct 12894.0 / Total 12928.0 [Epoch: 283], Loss: 0.009, Acc: 99.740, Correct 25661.0 / Total 25728.0 [Epoch: 283], Loss: 0.009, Acc: 99.725, Correct 38422.0 / Total 38528.0 [Epoch: 283], Acc: 89.420 Best Model Saving... Current Learning Rate: [0.006956417420409298] [Epoch: 284], Loss: 0.010, Acc: 99.683, Correct 12887.0 / Total 12928.0 [Epoch: 284], Loss: 0.010, Acc: 99.697, Correct 25650.0 / Total 25728.0 [Epoch: 284], Loss: 0.010, Acc: 99.689, Correct 38408.0 / Total 38528.0 [Epoch: 284], Acc: 89.370 Current Learning Rate: [0.0064688244467137924] [Epoch: 285], Loss: 0.006, Acc: 99.838, Correct 12907.0 / Total 12928.0 [Epoch: 285], Loss: 0.007, Acc: 99.802, Correct 25677.0 / Total 25728.0 [Epoch: 285], Loss: 0.007, Acc: 99.785, Correct 38445.0 / Total 38528.0 [Epoch: 285], Acc: 89.180 Current Learning Rate: [0.005998032845799671] [Epoch: 286], Loss: 0.006, Acc: 99.845, Correct 12908.0 / Total 12928.0 [Epoch: 286], Loss: 0.006, Acc: 99.817, Correct 25681.0 / Total 25728.0 [Epoch: 286], Loss: 0.006, Acc: 99.795, Correct 38449.0 / Total 38528.0 [Epoch: 286], Acc: 89.140 Current Learning Rate: [0.0055442241167910295] [Epoch: 287], Loss: 0.008, Acc: 99.737, Correct 12894.0 / Total 12928.0 [Epoch: 287], Loss: 0.007, Acc: 99.759, Correct 25666.0 / Total 25728.0 [Epoch: 287], Loss: 0.007, Acc: 99.779, Correct 38443.0 / Total 38528.0 [Epoch: 287], Acc: 89.310 Current Learning Rate: [0.005107573211591536] [Epoch: 288], Loss: 0.007, Acc: 99.729, Correct 12893.0 / Total 12928.0 [Epoch: 288], Loss: 0.007, Acc: 99.759, Correct 25666.0 / Total 25728.0 [Epoch: 288], Loss: 0.007, Acc: 99.756, Correct 38434.0 / Total 38528.0 [Epoch: 288], Acc: 89.330 Current Learning Rate: [0.004688248467437186] [Epoch: 289], Loss: 0.007, Acc: 99.783, Correct 12900.0 / Total 12928.0 [Epoch: 289], Loss: 0.007, Acc: 99.817, Correct 25681.0 / Total 25728.0 [Epoch: 289], Loss: 0.006, Acc: 99.834, Correct 38464.0 / Total 38528.0 [Epoch: 289], Acc: 89.370 Current Learning Rate: [0.004286411541999064] [Epoch: 290], Loss: 0.006, Acc: 99.830, Correct 12906.0 / Total 12928.0 [Epoch: 290], Loss: 0.005, Acc: 99.841, Correct 25687.0 / Total 25728.0 [Epoch: 290], Loss: 0.005, Acc: 99.839, Correct 38466.0 / Total 38528.0 [Epoch: 290], Acc: 89.200 Current Learning Rate: [0.0039022173510612273] [Epoch: 291], Loss: 0.006, Acc: 99.845, Correct 12908.0 / Total 12928.0 [Epoch: 291], Loss: 0.006, Acc: 99.829, Correct 25684.0 / Total 25728.0 [Epoch: 291], Loss: 0.005, Acc: 99.834, Correct 38464.0 / Total 38528.0 [Epoch: 291], Acc: 89.350 Current Learning Rate: [0.003535814008797773] [Epoch: 292], Loss: 0.004, Acc: 99.876, Correct 12912.0 / Total 12928.0 [Epoch: 292], Loss: 0.005, Acc: 99.837, Correct 25686.0 / Total 25728.0 [Epoch: 292], Loss: 0.005, Acc: 99.826, Correct 38461.0 / Total 38528.0 [Epoch: 292], Acc: 89.340 Current Learning Rate: [0.003187342770671916] [Epoch: 293], Loss: 0.004, Acc: 99.930, Correct 12919.0 / Total 12928.0 [Epoch: 293], Loss: 0.004, Acc: 99.880, Correct 25697.0 / Total 25728.0 [Epoch: 293], Loss: 0.004, Acc: 99.875, Correct 38480.0 / Total 38528.0 [Epoch: 293], Acc: 89.560 Best Model Saving... Current Learning Rate: [0.002856937978979447] [Epoch: 294], Loss: 0.004, Acc: 99.884, Correct 12913.0 / Total 12928.0 [Epoch: 294], Loss: 0.004, Acc: 99.883, Correct 25698.0 / Total 25728.0 [Epoch: 294], Loss: 0.004, Acc: 99.873, Correct 38479.0 / Total 38528.0 [Epoch: 294], Acc: 89.490 Current Learning Rate: [0.002544727011057081] [Epoch: 295], Loss: 0.004, Acc: 99.892, Correct 12914.0 / Total 12928.0 [Epoch: 295], Loss: 0.004, Acc: 99.883, Correct 25698.0 / Total 25728.0 [Epoch: 295], Loss: 0.004, Acc: 99.881, Correct 38482.0 / Total 38528.0 [Epoch: 295], Acc: 89.650 Best Model Saving... Current Learning Rate: [0.002250830230176169] [Epoch: 296], Loss: 0.004, Acc: 99.853, Correct 12909.0 / Total 12928.0 [Epoch: 296], Loss: 0.004, Acc: 99.887, Correct 25699.0 / Total 25728.0 [Epoch: 296], Loss: 0.004, Acc: 99.881, Correct 38482.0 / Total 38528.0 [Epoch: 296], Acc: 89.450 Current Learning Rate: [0.001975360939140324] [Epoch: 297], Loss: 0.003, Acc: 99.899, Correct 12915.0 / Total 12928.0 [Epoch: 297], Loss: 0.003, Acc: 99.903, Correct 25703.0 / Total 25728.0 [Epoch: 297], Loss: 0.003, Acc: 99.901, Correct 38490.0 / Total 38528.0 [Epoch: 297], Acc: 89.440 Current Learning Rate: [0.0017184253366050195] [Epoch: 298], Loss: 0.004, Acc: 99.884, Correct 12913.0 / Total 12928.0 [Epoch: 298], Loss: 0.004, Acc: 99.868, Correct 25694.0 / Total 25728.0 [Epoch: 298], Loss: 0.004, Acc: 99.868, Correct 38477.0 / Total 38528.0 [Epoch: 298], Acc: 89.690 Best Model Saving... Current Learning Rate: [0.001480122476136056] [Epoch: 299], Loss: 0.003, Acc: 99.915, Correct 12917.0 / Total 12928.0 [Epoch: 299], Loss: 0.003, Acc: 99.911, Correct 25705.0 / Total 25728.0 [Epoch: 299], Loss: 0.004, Acc: 99.899, Correct 38489.0 / Total 38528.0 [Epoch: 299], Acc: 89.680 Current Learning Rate: [0.0012605442280224245] [Epoch: 300], Loss: 0.003, Acc: 99.930, Correct 12919.0 / Total 12928.0 [Epoch: 300], Loss: 0.003, Acc: 99.934, Correct 25711.0 / Total 25728.0 [Epoch: 300], Loss: 0.003, Acc: 99.922, Correct 38498.0 / Total 38528.0 [Epoch: 300], Acc: 89.660 Current Learning Rate: [0.00105977524385864] [Epoch: 301], Loss: 0.002, Acc: 99.954, Correct 12922.0 / Total 12928.0 [Epoch: 301], Loss: 0.002, Acc: 99.934, Correct 25711.0 / Total 25728.0 [Epoch: 301], Loss: 0.003, Acc: 99.907, Correct 38492.0 / Total 38528.0 [Epoch: 301], Acc: 89.690 Current Learning Rate: [0.0008778929239099148] [Epoch: 302], Loss: 0.003, Acc: 99.907, Correct 12916.0 / Total 12928.0 [Epoch: 302], Loss: 0.003, Acc: 99.918, Correct 25707.0 / Total 25728.0 [Epoch: 302], Loss: 0.003, Acc: 99.920, Correct 38497.0 / Total 38528.0 [Epoch: 302], Acc: 89.660 Current Learning Rate: [0.000714967387272874] [Epoch: 303], Loss: 0.003, Acc: 99.884, Correct 12913.0 / Total 12928.0 [Epoch: 303], Loss: 0.003, Acc: 99.899, Correct 25702.0 / Total 25728.0 [Epoch: 303], Loss: 0.003, Acc: 99.904, Correct 38491.0 / Total 38528.0 [Epoch: 303], Acc: 89.600 Current Learning Rate: [0.0005710614448433164] [Epoch: 304], Loss: 0.004, Acc: 99.899, Correct 12915.0 / Total 12928.0 [Epoch: 304], Loss: 0.003, Acc: 99.911, Correct 25705.0 / Total 25728.0 [Epoch: 304], Loss: 0.003, Acc: 99.914, Correct 38495.0 / Total 38528.0 [Epoch: 304], Acc: 89.660 Current Learning Rate: [0.0004462305751014317] [Epoch: 305], Loss: 0.003, Acc: 99.892, Correct 12914.0 / Total 12928.0 [Epoch: 305], Loss: 0.003, Acc: 99.914, Correct 25706.0 / Total 25728.0 [Epoch: 305], Loss: 0.003, Acc: 99.927, Correct 38500.0 / Total 38528.0 [Epoch: 305], Acc: 89.630 Current Learning Rate: [0.00034052290272376895] [Epoch: 306], Loss: 0.002, Acc: 99.954, Correct 12922.0 / Total 12928.0 [Epoch: 306], Loss: 0.002, Acc: 99.934, Correct 25711.0 / Total 25728.0 [Epoch: 306], Loss: 0.003, Acc: 99.912, Correct 38494.0 / Total 38528.0 [Epoch: 306], Acc: 89.620 Current Learning Rate: [0.0002539791800302582] [Epoch: 307], Loss: 0.002, Acc: 99.946, Correct 12921.0 / Total 12928.0 [Epoch: 307], Loss: 0.002, Acc: 99.949, Correct 25715.0 / Total 25728.0 [Epoch: 307], Loss: 0.002, Acc: 99.943, Correct 38506.0 / Total 38528.0 [Epoch: 307], Acc: 89.630 Current Learning Rate: [0.00018663277127344463] [Epoch: 308], Loss: 0.003, Acc: 99.884, Correct 12913.0 / Total 12928.0 [Epoch: 308], Loss: 0.003, Acc: 99.883, Correct 25698.0 / Total 25728.0 [Epoch: 308], Loss: 0.003, Acc: 99.891, Correct 38486.0 / Total 38528.0 [Epoch: 308], Acc: 89.550 Current Learning Rate: [0.0001385096397758911] [Epoch: 309], Loss: 0.003, Acc: 99.938, Correct 12920.0 / Total 12928.0 [Epoch: 309], Loss: 0.003, Acc: 99.930, Correct 25710.0 / Total 25728.0 [Epoch: 309], Loss: 0.003, Acc: 99.920, Correct 38497.0 / Total 38528.0 [Epoch: 309], Acc: 89.700 Best Model Saving... Current Learning Rate: [0.00010962833792086233] [Epoch: 310], Loss: 0.002, Acc: 99.961, Correct 12923.0 / Total 12928.0 [Epoch: 310], Loss: 0.002, Acc: 99.953, Correct 25716.0 / Total 25728.0 [Epoch: 310], Loss: 0.003, Acc: 99.945, Correct 38507.0 / Total 38528.0 [Epoch: 310], Acc: 89.670 Current Learning Rate: [0.1]

HHEjie123 avatar May 27 '21 08:05 HHEjie123

这是botnet的,resnet50的

HHEjie123 avatar May 27 '21 08:05 HHEjie123

请问解决了吗?我也只有89.5%的acc

zhangyl660 avatar Aug 29 '21 04:08 zhangyl660

并没有,也不知道它们怎么做到的

------------------ 原始邮件 ------------------ 发件人: "leaderj1001/BottleneckTransformers" @.>; 发送时间: 2021年8月29日(星期天) 中午12:11 @.>; @.@.>; 主题: Re: [leaderj1001/BottleneckTransformers] cifar效果达不到啊,直接运行main (#16)

请问解决了吗?我也只有89.5%的acc

— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHub, or unsubscribe. Triage notifications on the go with GitHub Mobile for iOS or Android.

HHEjie123 avatar Aug 31 '21 01:08 HHEjie123

请问解决了吗?我也只有89.5%的acc

模型比resnet50大多少啊?

nanhui69 avatar Dec 28 '21 07:12 nanhui69