AICIty-reID-2020
AICIty-reID-2020 copied to clipboard
train_2020.py
郑博士以及各位大神好,代码出现点问题,我一个EPOCH都没跑玩,准确率为1,损失基本为0: 条件是:--name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --warm_epoch 5 --droprate 0 --stride 1 --erasing_p 0.5 --autoaug --inputsize 384 --lr 0.02 --use_SE --gpu_ids 0 --train_virtual --batchsize 8
下面是代码
from future import print_function, division
import argparse import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable from torchvision import datasets, transforms import torch.backends.cudnn as cudnn import matplotlib
matplotlib.use('agg') import matplotlib.pyplot as plt
from PIL import Image
import time
import os
from losses import AngleLoss, ArcLoss
from model import ft_net, ft_net_dense, ft_net_EF4, ft_net_EF5, ft_net_EF6, ft_net_IR, ft_net_NAS, ft_net_SE,
ft_net_DSE, PCB, CPB, ft_net_angle, ft_net_arc
from random_erasing import RandomErasing
import yaml
from AugFolder import AugFolder
from shutil import copyfile
import random
from autoaugment import ImageNetPolicy
from utils import get_model_list, load_network, save_network, make_weights_for_balanced_classes
version = torch.version
fp16
try: from apex.fp16_utils import * from apex import amp, optimizers except ImportError: # will be 3.x series print( 'This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
make the output
if not os.path.isdir('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs'): os.mkdir('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs') ######################################################################
Options
--------
parser = argparse.ArgumentParser(description='Training') parser.add_argument('--gpu_ids', default='0', type=str, help='gpu_ids: e.g. 0 0,1,2 0,2') parser.add_argument('--adam', action='store_true', help='use all training data') parser.add_argument('--name', default='ft_ResNet50', type=str, help='output model name') parser.add_argument('--init_name', default='imagenet', type=str, help='initial with ImageNet') parser.add_argument('--data_dir', default='/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/pytorch2020', type=str, help='training dir path') parser.add_argument('--train_all', action='store_true', help='use all training data') parser.add_argument('--train_veri', action='store_true', help='use part training data + veri') parser.add_argument('--train_virtual', action='store_true', help='use part training data + virtual') parser.add_argument('--train_comp', action='store_true', help='use part training data + comp') parser.add_argument('--train_pku', action='store_true', help='use part training data + pku') parser.add_argument('--train_comp_veri', action='store_true', help='use part training data + comp +veri') parser.add_argument('--train_milktea', action='store_true', help='use part training data + com + veri+pku') parser.add_argument('--color_jitter', action='store_true', help='use color jitter in training') parser.add_argument('--batchsize', default=32, type=int, help='batchsize') parser.add_argument('--inputsize', default=299, type=int, help='batchsize') parser.add_argument('--h', default=299, type=int, help='height') parser.add_argument('--w', default=299, type=int, help='width') parser.add_argument('--stride', default=2, type=int, help='stride') parser.add_argument('--pool', default='avg', type=str, help='last pool') parser.add_argument('--autoaug', action='store_true', help='use Color Data Augmentation') parser.add_argument('--erasing_p', default=0, type=float, help='Random Erasing probability, in [0,1]') parser.add_argument('--use_dense', action='store_true', help='use densenet121') parser.add_argument('--use_NAS', action='store_true', help='use nasnetalarge') parser.add_argument('--use_SE', action='store_true', help='use se_resnext101_32x4d') parser.add_argument('--use_DSE', action='store_true', help='use senet154') parser.add_argument('--use_IR', action='store_true', help='use InceptionResNetv2') parser.add_argument('--use_EF4', action='store_true', help='use EF4') parser.add_argument('--use_EF5', action='store_true', help='use EF5') parser.add_argument('--use_EF6', action='store_true', help='use EF6') parser.add_argument('--lr', default=0.05, type=float, help='learning rate') parser.add_argument('--droprate', default=0.5, type=float, help='drop rate') parser.add_argument('--PCB', action='store_true', help='use PCB+ResNet50') parser.add_argument('--CPB', action='store_true', help='use Center+ResNet50') parser.add_argument('--fp16', action='store_true', help='use float16 instead of float32, which will save about 50% memory') parser.add_argument('--balance', action='store_true', help='balance sample') parser.add_argument('--angle', action='store_true', help='use angle loss') parser.add_argument('--arc', action='store_true', help='use arc loss') parser.add_argument('--warm_epoch', default=0, type=int, help='the first K epoch that needs warm up') parser.add_argument('--resume', action='store_true', help='use arc loss') opt = parser.parse_args()
if opt.resume: model, opt, start_epoch = load_network(opt.name, opt) else: start_epoch = 0
print(start_epoch)
fp16 = opt.fp16 data_dir = opt.data_dir name = opt.name
if not opt.resume: str_ids = opt.gpu_ids.split(',') gpu_ids = [] for str_id in str_ids: gid = int(str_id) if gid >= 0: gpu_ids.append(gid) opt.gpu_ids = gpu_ids
set gpu ids
if len(opt.gpu_ids) > 0: cudnn.enabled = True cudnn.benchmark = True ######################################################################
Load Data
---------
if opt.h == opt.w: transform_train_list = [ # transforms.RandomRotation(30), transforms.Resize((opt.inputsize, opt.inputsize), interpolation=3), transforms.Pad(15), # transforms.RandomCrop((256,256)), transforms.RandomResizedCrop(size=opt.inputsize, scale=(0.75, 1.0), ratio=(0.75, 1.3333), interpolation=3), # Image.BICUBIC) transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]
transform_val_list = [
transforms.Resize(size=opt.inputsize, interpolation=3), # Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
else: transform_train_list = [ # transforms.RandomRotation(30), transforms.Resize((opt.h, opt.w), interpolation=3), transforms.Pad(15), # transforms.RandomCrop((256,256)), transforms.RandomResizedCrop(size=(opt.h, opt.w), scale=(0.75, 1.0), ratio=(0.75, 1.3333), interpolation=3), # Image.BICUBIC) transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]
transform_val_list = [
transforms.Resize((opt.h, opt.w), interpolation=3), # Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.PCB: transform_train_list = [ transforms.Resize((384, 192), interpolation=3), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ] transform_val_list = [ transforms.Resize(size=(384, 192), interpolation=3), # Image.BICUBIC transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]
if opt.erasing_p > 0: transform_train_list = transform_train_list + [RandomErasing(probability=opt.erasing_p, mean=[0.0, 0.0, 0.0])]
if opt.color_jitter: transform_train_list = [transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0)] + transform_train_list
transform_train_list_aug = [ImageNetPolicy()] + transform_train_list
print(transform_train_list) data_transforms = { 'train': transforms.Compose(transform_train_list), 'train_aug': transforms.Compose(transform_train_list_aug), 'val': transforms.Compose(transform_val_list), }
train_all = '' if opt.train_all: train_all = '_all'
if opt.train_veri: train_all = '+veri'
if opt.train_comp: train_all = '+comp'
if opt.train_virtual: train_all = '+virtual'
if opt.train_pku: train_all = '+pku'
if opt.train_comp_veri: train_all = '+comp+veri'
if opt.train_milktea: train_all = '+comp+veri+pku'
image_datasets = {}
if not opt.autoaug: image_datasets['train'] = datasets.ImageFolder(os.path.join(data_dir, 'train' + train_all), data_transforms['train']) else: image_datasets['train'] = AugFolder(os.path.join(data_dir, 'train' + train_all), data_transforms['train'], data_transforms['train_aug'])
if opt.balance: dataset_train = image_datasets['train'] weights = make_weights_for_balanced_classes(dataset_train.imgs, len(dataset_train.classes)) weights = torch.DoubleTensor(weights) sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(weights)) dataloaders = {} dataloaders['train'] = torch.utils.data.DataLoader(image_datasets['train'], batch_size=opt.batchsize, sampler=sampler, num_workers=8, pin_memory=True) # 8 workers may work faster else: dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize, shuffle=True, num_workers=8, pin_memory=True) # 8 workers may work faster for x in ['train']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train']} class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
since = time.time()
inputs, classes = next(iter(dataloaders['train']))
print(time.time()-since)
######################################################################
Training the model
------------------
Now, let's write a general function to train a model. Here, we will
illustrate:
- Scheduling the learning rate
- Saving the best model
In the following, parameter scheduler
is an LR scheduler object from
torch.optim.lr_scheduler
.
y_loss = {} # loss history y_loss['train'] = [] y_loss['val'] = [] y_err = {} y_err['train'] = [] y_err['val'] = []
def train_model(model, criterion, optimizer, scheduler, start_epoch=0, num_epochs=25): since = time.time()
warm_up = 0.1 # We start from the 0.1*lrRate
gamma = 0.0 # auto_aug
warm_iteration = round(dataset_sizes['train'] / opt.batchsize) * opt.warm_epoch # first 5 epoch
total_iteration = round(dataset_sizes['train'] / opt.batchsize) * num_epochs
best_model_wts = model.state_dict()
best_loss = 9999
best_epoch = 0
for epoch in range(num_epochs - start_epoch):
epoch = epoch + start_epoch
print('gamma: %.4f' % gamma)
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 50)
# Each epoch has a training and validation phase
for phase in ['train']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
global_step = 0
iterate_num = 0
# Iterate over data.
for data in dataloaders[phase]:
# get the inputs
if opt.autoaug:
inputs, inputs2, labels = data
if random.uniform(0, 1) > gamma:
inputs = inputs2
gamma = min(1.0, gamma + 1.0 / total_iteration)
else:
inputs, labels = data
now_batch_size, c, h, w = inputs.shape
if now_batch_size < opt.batchsize: # skip the last batch
continue
# print(inputs.shape)
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda().detach())
labels = Variable(labels.cuda().detach())
else:
inputs, labels = Variable(inputs), Variable(labels)
# if we use low precision, input also need to be fp16
# if fp16:
# inputs = inputs.half()
# zero the parameter gradients
optimizer.zero_grad()
# forward
if phase == 'val':
with torch.no_grad():
outputs = model(inputs)
else:
outputs = model(inputs)
if opt.PCB:
part = {}
sm = nn.Softmax(dim=1)
num_part = 6
for i in range(num_part):
part[i] = outputs[i]
score = sm(part[0]) + sm(part[1]) + sm(part[2]) + sm(part[3]) + sm(part[4]) + sm(part[5])
_, preds = torch.max(score.data, 1)
loss = criterion(part[0], labels)
for i in range(num_part - 1):
loss += criterion(part[i + 1], labels)
elif opt.CPB:
part = {}
sm = nn.Softmax(dim=1)
num_part = 4
for i in range(num_part):
part[i] = outputs[i]
score = sm(part[0]) + sm(part[1]) + sm(part[2]) + sm(part[3])
_, preds = torch.max(score.data, 1)
loss = criterion(part[0], labels)
for i in range(num_part - 1):
loss += criterion(part[i + 1], labels)
else:
loss = criterion(outputs, labels)
if opt.angle or opt.arc:
outputs = outputs[0]
_, preds = torch.max(outputs.data, 1)
# backward + optimize only if in training phase
if epoch < opt.warm_epoch and phase == 'train':
warm_up = min(1.0, warm_up + 0.9 / warm_iteration)
loss *= warm_up
# backward + optimize only if in training phase
if phase == 'train':
if fp16: # we use optimier to backward loss
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
global_step += 1
iterate_num += now_batch_size
print('Epoch: [{0}] [{1} / {2}]\t'
'Global_step: {3:}\t'
'Loss: {4:.3f}\t'
'Accurcy: {5:.3f}\t'.format(epoch, iterate_num, dataset_sizes[phase], global_step, loss.item(),
float(torch.sum(preds == labels.data)) / now_batch_size))
# print('Epoch:%d Iteration:%d Total:%d Global_step:%d loss:%.2f accuracy:%.2f' % (
# epoch, iterate_num, dataset_sizes[phase], global_step, loss.item(), float(torch.sum(preds == labels.data)) / now_batch_size))
# statistics
if int(version[0]) > 0 or int(version[2]) > 3: # for the new version like 0.4.0, 0.5.0 and 1.0.0
running_loss += loss.item() * now_batch_size
else: # for the old version like 0.3.0 and 0.3.1
running_loss += loss.data[0] * now_batch_size
running_corrects += float(torch.sum(preds == labels.data))
del (loss, outputs, inputs, preds)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
y_loss[phase].append(epoch_loss)
y_err[phase].append(1.0 - epoch_acc)
# deep copy the model
if len(opt.gpu_ids) > 1:
save_network(model.module, opt.name, epoch + 1)
else:
save_network(model, opt.name, epoch + 1)
draw_curve(epoch)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print()
if epoch_loss < best_loss:
best_loss = epoch_loss
best_epoch = epoch
last_model_wts = model.state_dict()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best epoch: {:d} Best Train Loss: {:4f}'.format(best_epoch, best_loss))
# load best model weights
model.load_state_dict(last_model_wts)
save_network(model, opt.name, 'last')
return model
######################################################################
Draw Curve
---------------------------
x_epoch = [] fig = plt.figure() ax0 = fig.add_subplot(121, title="loss") ax1 = fig.add_subplot(122, title="top1err")
def draw_curve(current_epoch): x_epoch.append(current_epoch) ax0.plot(x_epoch, y_loss['train'], 'bo-', label='train') # ax0.plot(x_epoch, y_loss['val'], 'ro-', label='val') ax1.plot(x_epoch, y_err['train'], 'bo-', label='train') # ax1.plot(x_epoch, y_err['val'], 'ro-', label='val') if current_epoch == 0: ax0.legend() ax1.legend() fig.savefig(os.path.join('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs', name, 'train.png'))
######################################################################
Finetuning the convnet
----------------------
Load a pretrainied model and reset final fully connected layer.
if not opt.resume: opt.nclasses = len(class_names) if opt.use_dense: model = ft_net_dense(len(class_names), opt.droprate, opt.stride, None, opt.pool) elif opt.use_NAS: model = ft_net_NAS(len(class_names), opt.droprate, opt.stride) elif opt.use_SE: model = ft_net_SE(len(class_names), opt.droprate, opt.stride, opt.pool) elif opt.use_DSE: model = ft_net_DSE(len(class_names), opt.droprate, opt.stride, opt.pool) elif opt.use_IR: model = ft_net_IR(len(class_names), opt.droprate, opt.stride) elif opt.use_EF4: model = ft_net_EF4(len(class_names), opt.droprate) elif opt.use_EF5: model = ft_net_EF5(len(class_names), opt.droprate) elif opt.use_EF6: model = ft_net_EF6(len(class_names), opt.droprate) else: model = ft_net(len(class_names), opt.droprate, opt.stride, None, opt.pool)
if opt.PCB:
model = PCB(len(class_names))
if opt.CPB:
model = CPB(len(class_names))
if opt.angle:
model = ft_net_angle(len(class_names), opt.droprate, opt.stride)
elif opt.arc:
model = ft_net_arc(len(class_names), opt.droprate, opt.stride)
if opt.init_name != 'imagenet': old_opt = parser.parse_args() init_model, old_opt, _ = load_network(opt.init_name, old_opt) print(old_opt) opt.stride = old_opt.stride opt.pool = old_opt.pool opt.use_dense = old_opt.use_dense if opt.use_dense: model = ft_net_dense(opt.nclasses, droprate=opt.droprate, stride=opt.stride, init_model=init_model, pool=opt.pool) else: model = ft_net(opt.nclasses, droprate=opt.droprate, stride=opt.stride, init_model=init_model, pool=opt.pool)
##########################
Put model parameter in front of the optimizer!!!
For resume:
if start_epoch >= 60: opt.lr = opt.lr * 0.1 if start_epoch >= 75: opt.lr = opt.lr * 0.1
if len(opt.gpu_ids) > 1: model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids).cuda() if not opt.CPB: ignored_params = list(map(id, model.module.classifier.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer_ft = optim.SGD([ {'params': base_params, 'lr': 0.1 * opt.lr}, {'params': model.module.classifier.parameters(), 'lr': opt.lr} ], weight_decay=5e-4, momentum=0.9, nesterov=True) else: ignored_params = (list(map(id, model.module.classifier0.parameters())) + list(map(id, model.module.classifier1.parameters())) + list(map(id, model.module.classifier2.parameters())) + list(map(id, model.module.classifier3.parameters())) ) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer_ft = optim.SGD([ {'params': base_params, 'lr': 0.1 * opt.lr}, {'params': model.module.classifier0.parameters(), 'lr': opt.lr}, {'params': model.module.classifier1.parameters(), 'lr': opt.lr}, {'params': model.module.classifier2.parameters(), 'lr': opt.lr}, {'params': model.module.classifier3.parameters(), 'lr': opt.lr}, ], weight_decay=5e-4, momentum=0.9, nesterov=True) else: model = model.cuda() if not opt.CPB: ignored_params = list(map(id, model.classifier.parameters())) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer_ft = optim.SGD([ {'params': base_params, 'lr': 0.1 * opt.lr}, {'params': model.classifier.parameters(), 'lr': opt.lr} ], weight_decay=5e-4, momentum=0.9, nesterov=True) else: ignored_params = (list(map(id, model.classifier0.parameters())) + list(map(id, model.classifier1.parameters())) + list(map(id, model.classifier2.parameters())) + list(map(id, model.classifier3.parameters())) ) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer_ft = optim.SGD([ {'params': base_params, 'lr': 0.1 * opt.lr}, {'params': model.classifier0.parameters(), 'lr': opt.lr}, {'params': model.classifier1.parameters(), 'lr': opt.lr}, {'params': model.classifier2.parameters(), 'lr': opt.lr}, {'params': model.classifier3.parameters(), 'lr': opt.lr}, ], weight_decay=5e-4, momentum=0.9, nesterov=True)
if opt.adam: optimizer_ft = optim.Adam(model.parameters(), opt.lr, weight_decay=5e-4)
Decay LR by a factor of 0.1 every 40 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=40, gamma=0.1)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer_ft, milestones=[60 - start_epoch, 75 - start_epoch], gamma=0.1)
######################################################################
Train and evaluate
^^^^^^^^^^^^^^^^^^
It should take around 1-2 hours on GPU.
dir_name = os.path.join('/home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/outputs', name)
if not opt.resume: if not os.path.isdir(dir_name): os.mkdir(dir_name) # record every run copyfile('./train_2020.py', dir_name + '/train.py') copyfile('./model.py', dir_name + '/model.py') # save opts with open('%s/opts.yaml' % dir_name, 'w') as fp: yaml.dump(vars(opt), fp, default_flow_style=False)
model to gpu
if fp16: # model = network_to_half(model) # optimizer_ft = FP16_Optimizer(optimizer_ft, dynamic_loss_scale=True) model, optimizer_ft = amp.initialize(model, optimizer_ft, opt_level="O1")
if opt.angle: criterion = AngleLoss() elif opt.arc: criterion = ArcLoss() else: criterion = nn.CrossEntropyLoss()
print(model) model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler, start_epoch=start_epoch, num_epochs=80)
感谢关注。报错是什么? 有log么?
感谢郑博回复,代码没有报错,只是准确率为1,损失基本为0,是因为我的数据集划分的问题吗,还是代码?下面是我训练数据集的结构,共有229085张图片 /home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/2020AICITY/aicity_all/image_train
你是不是就分了一个文件夹。。导致只有一类?
你是不是就分了一个文件夹。。导致只有一类?
是的,我的home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/2020AICITY/aicity_all中 只有image_train这个文件夹;这个文件夹包含了大赛的两个数据集中image_train的图片,共229085(36935+192150)
你需要跑一下 python prepare_2020.py 他的目的是 把每一类的图像放一个文件夹。
python prepare_2020.py以及python prepare_cam2020.py都跑了
您好!之前跑代码的条件是按照您github中推荐的设置条件:--name SE_imbalance_s1_384_p0.5_lr2_mt_d0_b24+v+aug --warm_epoch 5 --droprate 0 --stride 1 --erasing_p 0.5 --autoaug --inputsize 384 --lr 0.02 --use_SE --gpu_ids 0 --train_virtual --batchsize 8,损失基本为0,准确率接近1 但是,如果在Edit Congfiguation不去设置条件,仅今年只是采取train_2020中的默认条件去跑代码,损失和准确率就正常了,不会过分高.下面是默认条件的opt.yml
CPB: false PCB: false adam: false angle: false arc: false autoaug: false balance: false batchsize: 32 color_jitter: false data_dir: /home/ubuntu-guangzhaodai/Desktop/AICIty-reID-2020/data/pytorch2020 droprate: 0.5 erasing_p: 0 fp16: false gpu_ids:
- 0 h: 299 init_name: imagenet inputsize: 299 lr: 0.05 name: ft_ResNet50 nclasses: 255 pool: avg resume: false stride: 2 train_all: false train_comp: false train_comp_veri: false train_milktea: false train_pku: false train_veri: false train_virtual: false use_DSE: false use_EF4: false use_EF5: false use_EF6: false use_IR: false use_NAS: false use_SE: false use_dense: false w: 299 warm_epoch: 0