Unable load pdf file to astra database
Bug Description
Unable load pdf file to astra database
This is my lang flow, it shows no error when I run it, but no records getting loaded to the database
Reproduction
available in the screen shot
Expected behavior
I am expecting the pdf file should be parsed and loaded to my astra db
Who can help?
@italojohnny @ogabrielluiz @nicoloboschi @zzzming @jordanrfrazier @mfortman11 @NadirJ
Operating System
Windows
Langflow Version
1.0
Python Version
3.10
Screenshot
Flow File
No response
Hello @selvabharathG! I'm here to assist with any bugs, questions, or contributions you may have while waiting for a human maintainer. Let's tackle this issue together!
To troubleshoot the issue where your data processing pipeline shows no errors but fails to load records into Astra DB when processing a PDF file, you can follow these steps:
-
Check File Type Support: Ensure that the PDF file type is supported by your file loader component. The
FileComponentclass supports specific text file types and raises an error for unsupported file types. Verify that the PDF file is correctly handled by theparse_text_file_to_recordfunction. -
Verify Data Parsing: Ensure that the
parse_text_file_to_recordfunction correctly parses the PDF file and returns a validRecordobject. The function usesparse_pdf_to_textto extract text from the PDF. When parsing is successful, the expected output is aDataobject containing the extracted text and metadata, including the file path [1]. -
Check Silent Errors: If
silent_errorsis set toTrue, errors during file loading will not raise exceptions, which might cause the pipeline to proceed without loading any data. Setsilent_errorstoFalseto catch and debug any errors during file loading. -
Inspect Pipeline Configuration: Ensure that the pipeline configuration correctly passes the loaded
Recordto the subsequent components responsible for inserting data into Astra DB. Verify that the data flow between components is correctly set up. -
Check Astra DB Configuration: Ensure that the Astra DB configuration, such as the API endpoint, batch size, and concurrency settings, is correctly set up and matches the requirements for data insertion [2].
-
Logging Mechanisms: Utilize the logging mechanisms in place within the pipeline to track the flow of data and identify where the process might be failing. The Logs page provides a detailed record of all component executions within a workspace, including errors encountered [3].
By following these steps, you should be able to identify and resolve the issue preventing records from being loaded into Astra DB.
To continue talking to Dosu, mention @dosu.
Hi @selvabharathG I just tried with 1.0.13 and works for me. Maybe there's something wrong during the processing. Can you run langflow with debug log activated
export LANGFLOW_LOG_LEVEL=debug
langflow run
You should a line like this
[07/30/24 09:26:29] DEBUG 2024-07-30 09:26:29 - DEBUG - <string> - Adding 50 documents to the Vector Store.
Hi @selvabharathG I just tried with 1.0.13 and works for me. Maybe there's something wrong during the processing. Can you run langflow with debug log activated
export LANGFLOW_LOG_LEVEL=debug langflow runYou should a line like this
[07/30/24 09:26:29] DEBUG 2024-07-30 09:26:29 - DEBUG - <string> - Adding 50 documents to the Vector Store.
Thanks @nicoloboschi for the response, may I know which flow should have this line?
The AstraDB node should log this when indexing data. That depends on PDF size of course
@nicoloboschi sorry I am completely new this, May I know where should I add this line. pasting the complete node code here
from langchain_core.vectorstores import VectorStore from loguru import logger
from langflow.base.vectorstores.model import LCVectorStoreComponent from langflow.helpers import docs_to_data from langflow.inputs import DictInput, FloatInput from langflow.io import ( BoolInput, DataInput, DropdownInput, HandleInput, IntInput, MultilineInput, SecretStrInput, StrInput, ) from langflow.schema import Data
class AstraVectorStoreComponent(LCVectorStoreComponent): display_name: str = "Astra DB" description: str = "Implementation of Vector Store using Astra DB with search capabilities" documentation: str = "https://python.langchain.com/docs/integrations/vectorstores/astradb" name = "AstraDB" icon: str = "AstraDB"
_cached_vectorstore: VectorStore | None = None
inputs = [
StrInput(
name="collection_name",
display_name="Collection Name",
info="The name of the collection within Astra DB where the vectors will be stored.",
required=True,
),
SecretStrInput(
name="token",
display_name="Astra DB Application Token",
info="Authentication token for accessing Astra DB.",
value="ASTRA_DB_APPLICATION_TOKEN",
required=True,
),
SecretStrInput(
name="api_endpoint",
display_name="API Endpoint",
info="API endpoint URL for the Astra DB service.",
value="ASTRA_DB_API_ENDPOINT",
required=True,
),
MultilineInput(
name="search_input",
display_name="Search Input",
),
DataInput(
name="ingest_data",
display_name="Ingest Data",
is_list=True,
),
StrInput(
name="namespace",
display_name="Namespace",
info="Optional namespace within Astra DB to use for the collection.",
advanced=True,
),
DropdownInput(
name="metric",
display_name="Metric",
info="Optional distance metric for vector comparisons in the vector store.",
options=["cosine", "dot_product", "euclidean"],
advanced=True,
),
IntInput(
name="batch_size",
display_name="Batch Size",
info="Optional number of data to process in a single batch.",
advanced=True,
),
IntInput(
name="bulk_insert_batch_concurrency",
display_name="Bulk Insert Batch Concurrency",
info="Optional concurrency level for bulk insert operations.",
advanced=True,
),
IntInput(
name="bulk_insert_overwrite_concurrency",
display_name="Bulk Insert Overwrite Concurrency",
info="Optional concurrency level for bulk insert operations that overwrite existing data.",
advanced=True,
),
IntInput(
name="bulk_delete_concurrency",
display_name="Bulk Delete Concurrency",
info="Optional concurrency level for bulk delete operations.",
advanced=True,
),
DropdownInput(
name="setup_mode",
display_name="Setup Mode",
info="Configuration mode for setting up the vector store, with options like 'Sync', 'Async', or 'Off'.",
options=["Sync", "Async", "Off"],
advanced=True,
value="Sync",
),
BoolInput(
name="pre_delete_collection",
display_name="Pre Delete Collection",
info="Boolean flag to determine whether to delete the collection before creating a new one.",
advanced=True,
),
StrInput(
name="metadata_indexing_include",
display_name="Metadata Indexing Include",
info="Optional list of metadata fields to include in the indexing.",
advanced=True,
),
HandleInput(
name="embedding",
display_name="Embedding or Astra Vectorize",
input_types=["Embeddings", "dict"],
info="Allows either an embedding model or an Astra Vectorize configuration.", # TODO: This should be optional, but need to refactor langchain-astradb first.
),
StrInput(
name="metadata_indexing_exclude",
display_name="Metadata Indexing Exclude",
info="Optional list of metadata fields to exclude from the indexing.",
advanced=True,
),
StrInput(
name="collection_indexing_policy",
display_name="Collection Indexing Policy",
info="Optional dictionary defining the indexing policy for the collection.",
advanced=True,
),
IntInput(
name="number_of_results",
display_name="Number of Results",
info="Number of results to return.",
advanced=True,
value=4,
),
DropdownInput(
name="search_type",
display_name="Search Type",
info="Search type to use",
options=["Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)"],
value="Similarity",
advanced=True,
),
FloatInput(
name="search_score_threshold",
display_name="Search Score Threshold",
info="Minimum similarity score threshold for search results. (when using 'Similarity with score threshold')",
value=0,
advanced=True,
),
DictInput(
name="search_filter",
display_name="Search Metadata Filter",
info="Optional dictionary of filters to apply to the search query.",
advanced=True,
is_list=True,
),
]
def _build_vector_store(self):
# cache the vector store to avoid re-initializing and ingest data again
if self._cached_vectorstore:
return self._cached_vectorstore
try:
from langchain_astradb import AstraDBVectorStore
from langchain_astradb.utils.astradb import SetupMode
except ImportError:
raise ImportError(
"Could not import langchain Astra DB integration package. "
"Please install it with `pip install langchain-astradb`."
)
try:
if not self.setup_mode:
self.setup_mode = self._inputs["setup_mode"].options[0]
setup_mode_value = SetupMode[self.setup_mode.upper()]
except KeyError:
raise ValueError(f"Invalid setup mode: {self.setup_mode}")
if not isinstance(self.embedding, dict):
embedding_dict = {"embedding": self.embedding}
else:
from astrapy.info import CollectionVectorServiceOptions
dict_options = self.embedding.get("collection_vector_service_options", {})
dict_options["authentication"] = {
k: v for k, v in dict_options.get("authentication", {}).items() if k and v
}
dict_options["parameters"] = {k: v for k, v in dict_options.get("parameters", {}).items() if k and v}
embedding_dict = {
"collection_vector_service_options": CollectionVectorServiceOptions.from_dict(dict_options)
}
collection_embedding_api_key = self.embedding.get("collection_embedding_api_key")
if collection_embedding_api_key:
embedding_dict["collection_embedding_api_key"] = collection_embedding_api_key
vector_store_kwargs = {
**embedding_dict,
"collection_name": self.collection_name,
"token": self.token,
"api_endpoint": self.api_endpoint,
"namespace": self.namespace or None,
"metric": self.metric or None,
"batch_size": self.batch_size or None,
"bulk_insert_batch_concurrency": self.bulk_insert_batch_concurrency or None,
"bulk_insert_overwrite_concurrency": self.bulk_insert_overwrite_concurrency or None,
"bulk_delete_concurrency": self.bulk_delete_concurrency or None,
"setup_mode": setup_mode_value,
"pre_delete_collection": self.pre_delete_collection or False,
}
if self.metadata_indexing_include:
vector_store_kwargs["metadata_indexing_include"] = self.metadata_indexing_include
elif self.metadata_indexing_exclude:
vector_store_kwargs["metadata_indexing_exclude"] = self.metadata_indexing_exclude
elif self.collection_indexing_policy:
vector_store_kwargs["collection_indexing_policy"] = self.collection_indexing_policy
try:
vector_store = AstraDBVectorStore(**vector_store_kwargs)
except Exception as e:
raise ValueError(f"Error initializing AstraDBVectorStore: {str(e)}") from e
self._add_documents_to_vector_store(vector_store)
self._cached_vectorstore = vector_store
return vector_store
def _add_documents_to_vector_store(self, vector_store):
documents = []
for _input in self.ingest_data or []:
if isinstance(_input, Data):
documents.append(_input.to_lc_document())
else:
raise ValueError("Vector Store Inputs must be Data objects.")
if documents:
logger.debug(f"Adding {len(documents)} documents to the Vector Store.")
try:
vector_store.add_documents(documents)
except Exception as e:
raise ValueError(f"Error adding documents to AstraDBVectorStore: {str(e)}") from e
else:
logger.debug("No documents to add to the Vector Store.")
def _map_search_type(self):
if self.search_type == "Similarity with score threshold":
return "similarity_score_threshold"
elif self.search_type == "MMR (Max Marginal Relevance)":
return "mmr"
else:
return "similarity"
def _build_search_args(self):
args = {
"k": self.number_of_results,
"score_threshold": self.search_score_threshold,
}
if self.search_filter:
clean_filter = {k: v for k, v in self.search_filter.items() if k and v}
if len(clean_filter) > 0:
args["filter"] = clean_filter
return args
def search_documents(self) -> list[Data]:
vector_store = self._build_vector_store()
logger.debug(f"Search input: {self.search_input}")
logger.debug(f"Search type: {self.search_type}")
logger.debug(f"Number of results: {self.number_of_results}")
if self.search_input and isinstance(self.search_input, str) and self.search_input.strip():
try:
search_type = self._map_search_type()
search_args = self._build_search_args()
docs = vector_store.search(query=self.search_input, search_type=search_type, **search_args)
except Exception as e:
raise ValueError(f"Error performing search in AstraDBVectorStore: {str(e)}") from e
logger.debug(f"Retrieved documents: {len(docs)}")
data = docs_to_data(docs)
logger.debug(f"Converted documents to data: {len(data)}")
self.status = data
return data
else:
logger.debug("No search input provided. Skipping search.")
return []
def get_retriever_kwargs(self):
search_args = self._build_search_args()
return {
"search_type": self._map_search_type(),
"search_kwargs": search_args,
}
def build_vector_store(self):
vector_store = self._build_vector_store()
return vector_store
hey @selvabharathG sorry maybe I wasn't clear. You don't have to add any line. If you set LANGFLOW_LOG_LEVEL=debug before running langflow, you will see that line of logs in the output
@selvabharathG just checking if you resolved your problem so I can close this issue
Hi @nicoloboschi
Sorry for the late reply. I was travelling.
I couldn't add the suggested method because I was trying this flow in datastax online GUI.
Is there any other way to identify the issue please
Hey @selvabharathG, apologies on our end for the late response here - Nicolo and I were also out all last week.
I've reproduced your flow in the datastax online GUI and successfully loaded documents. I tried a few things to break it, such as creating a collection with a different dimension size than the embedding model uses, incorrect collection name, etc, but got appropriate errors for those use cases.
Can you do me a favor and try to follow the screen recording here, then we can dig into specific problems with your environment depending on how that goes.
https://github.com/user-attachments/assets/e202f1ec-4cf3-4023-b97c-f06c7a8035e4
Sure, let me try this.
Thanks for checking
@selvabharathG Do you need any assistance with this case? If not, please let us know if this issue can be closed.
Thank you for your contribution! This issue will be closed. If you have any questions or encounter another problem, please open a new issue and we will be ready to assist you.