langchain
langchain copied to clipboard
Feature Request - Explicit Creation of Vector Index with Custom Embedding Configuration in Neo4j Graph DB
Feature request
Explore these Neo4j resources for enhanced insights:
Indexes for Vector Search Query Tuning and Indexes Neo4j LangChain Vector Index Implementation
Hope you find them helpful!
Motivation
I am always frustrated when
from langchain.graphs import Neo4jGraph
graph = Neo4jGraph(
url=os.environ["NEO4J_URI"],
username=os.environ["NEO4J_USERNAME"],
password=os.environ["NEO4J_PASSWORD"]
)
vector_index = Neo4jVector.from_existing_graph(
HuggingFaceBgeEmbeddings(),
url=os.environ["NEO4J_URI"],
username=os.environ["NEO4J_USERNAME"],
password=os.environ["NEO4J_PASSWORD"],
index_name='New_index',
node_label="Embeddable",
text_node_properties=['definition', 'term', 'clause'],
embedding_node_property='embedding',
)
The above code results in a TypeError:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
[<ipython-input-59-e24655343023>](https://localhost:8080/#) in <cell line: 1>()
----> 1 vector_index = Neo4jVector.from_existing_graph(
2 HuggingFaceBgeEmbeddings(),
3 url=os.environ["NEO4J_URI"],
4 username=os.environ["NEO4J_USERNAME"],
5 password=os.environ["NEO4J_PASSWORD"],
[/usr/local/lib/python3.10/dist-packages/langchain_community/vectorstores/neo4j_vector.py](https://localhost:8080/#) in from_existing_graph(cls, embedding, node_label, embedding_node_property, text_node_properties, keyword_index_name, index_name, search_type, retrieval_query, **kwargs)
877 + "} AS metadata, score"
878 )
--> 879 store = cls(
880 embedding=embedding,
881 index_name=index_name,
TypeError: Neo4jVector.__init__() got an unexpected keyword argument 'embedding_dimension'
Your contribution
Eager to contribute! Ready to submit a pull request for this feature enhancement. Will ensure alignment with the project's guidelines by thoroughly reading the Contributing Guide. Open to guidance and collaboration.
Excited to contribute!
🤖
Excited to hear that you're eager to contribute to LangChain! Your proposed feature enhancement sounds promising, and your willingness to submit a pull request is greatly appreciated. Make sure to thoroughly read the Contributing Guide to ensure alignment with the project's guidelines. If you have any questions or need guidance during the process, feel free to ask for help in the project's communication channels. Looking forward to seeing your contribution!
This response is meant to be useful and save you time. It is not meant to be a precise solution, but rather a starting point for your own research.
Help me be more useful! Please leave a 👍 if this is helpful and 👎 if it is irrelevant.
If you want to continue the conversation, start your reply with @dosu-bot.