DeconvDec
DeconvDec copied to clipboard
Code for "Deconvolution-Based Global Decoding for Neural Machine Translation" (COLING 2018).
DeconvDec
Code for the model proposed in our paper Deconvolution-Based Global Decoding for Neural Machine Translation, http://aclweb.org/anthology/C18-1276.
Requirements
- Ubuntu 16.0.4
- Python 3.5
- Pytorch 0.4.1
Preprocessing
python3 preprocess.py -load_data path_to_data -save_data path_to_store_data
Remember to put the data into a folder and name them train.src, train.tgt, valid.src, valid.tgt, test.src and test.tgt, and make a new folder inside called data. For more detailed setting, check the options in the file.
Training
python3 train.py -log log_name -config config_yaml -gpus id
Create your own yaml file for hyperparameter setting.
Evaluation
python3 train.py -log log_name -config config_yaml -gpus id -restore checkpoint -mode eval
Citation
If you use this code for your research, please kindly cite our paper:.
@inproceedings{DeconvDec,
author = {Junyang Lin and
Xu Sun and
Xuancheng Ren and
Shuming Ma and
Jinsong Su and
Qi Su},
title = {Deconvolution-Based Global Decoding for Neural Machine Translation},
booktitle = {Proceedings of the 27th International Conference on Computational
Linguistics, {COLING} 2018, Santa Fe, New Mexico, USA, August 20-26,
2018},
pages = {3260--3271},
year = {2018}
}